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Seit mit Erscheinen des Kinect�Sensors die Idee der gestengesteuerten Interaktion den Massen-
markt durchdrungen hat, besteht hohes Interesse an Erforschung dieser Materie. Den daraus fol-
genden Fortschritten ist es zu verdanken, dass es heute möglich ist, für die breite Masse Anwen-
dungen zu entwickeln, mit denen ohne zusätzliche Eingabegeräte interagiert werden kann. Diese
auf Gesten basierenden Eingabemethoden können in vielen Bereichen zum Einsatz kommen, wie
etwa in Computerspielen oder Anwendungen für Virtual Reality.

Wir haben eine Anwendung entwickelt, in der die teilnehmenden Benutzer und Benutzerinnen
durch eine Kinect�Kamera mit einem virtuellen Kolibri interagieren können. Streckt der Benutzer
oder die Benutzerin seine oder ihre Hand aus, so wächst aus seinem oder ihrem Handballen eine
Blume, die die Aufmerksamkeit des Kolibris erweckt.

Nachdem die Erkennung der Geste einer ausgestreckten Hand die Basis für die funktionierende
Interaktion unseres Programms bildet, konzentriert sich unsere Arbeit auf diesen speziellen An-
wendungsfall. Zusätzlich tut sich in unserem Szenario die Notwendigkeit auf, für eine korrekte
Gestenerkennung die Orientierung der Hand mit Hilfe der Fingerspitzenpositionen zu ermitteln.

Im Zuge unserer Forschung vergleichen wir verschiedene Algorithmen zur Erkennung von Gesten
und Fingerspitzen und stellen die Vor� und Nachteile ihrer Einsatzfähigkeit unserer speziellen
Anforderung gegenüber. Die Erkenntnisse dieses theoretischen Vergleiches bilden die Entschei-
dungsgrundlage zur �nalen Implementierung. Danach bewerten wir unsere Lösung auf ihre Pra-
xistauglichkeit, indem wir unseren Gestenerkennungsalgorithmus in verschiedenen Gröÿen� und
Sichtverhältnissen auf ihre Robustheit testen.

Schlagwörter: Gesture Recognition, Kinect, Depth Imaging, Convex Hull, Finger�Earth Mo-
ver's Distance, Curvature Morphology, K�Curvature Estimation
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Abstract

Since the release of Microsoft's Kinect technology gesture recognition has become widely accessible
to the public. As a result of this increased research interest it is possible to develop applications for
the masses, which can be controlled without any additional input devices. Those input methods
can be used within various setups such as computer games or applications for virtual reality.

We developed a software, where users can interact with a hummingbird through a Kinect camera.
When the user stretches out his or her arm, a �ower grows out of his or her palm attracting the
bird's attention.

As the robust detection of the gesture of an outstretched arm is one of the key features for �awless
interaction, our thesis will emphasize on this topic. Additionally, for stable gesture detection we
need to extract the �ngertip positions to gather information about the hand's orientation.

In our research, we compare various algorithms detecting gestures and �ngertip positions and
draw conclusions from their advantages and disadvantages to usage in our practical setup. The
results of this theoretical comparison lead us to a decision for an algorithm implemented in our
�nal setup. In the end, we evaluate our solution by testing the robustness of our gesture detection
algorithm within various scales and point of views.

Keywords: Gesture Recognition, Kinect, Depth Imaging, Convex Hull, Finger�Earth Mover's

Distance, Curvature Morphology, K�Curvature Estimation
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1 OVERVIEW 1

1 Overview

1.1 Motivation

Gesture recognition provides a natural way in communication between humans and machines.
Widely available and a�ordable components like Microsoft's Kinect make this technology widely
accessible to the public, which gives real�world computer vision applications a boost (Doliotis et
al. 2011). Beside Microsoft also other companies like for instance GestureTek1 or Reactrix2 o�er
hardware solutions for gesture controlled interaction.

Other domains where Human Computer Interaction (HCI) bene�ts of the usage of gesture recog-
nition are for instance applications in virtual reality, sign language recognition, computer games or
human�robot interaction (Ren, Yuan, and Zhang 2011; Kim et al. 2010). Also, gesture recognition
can be useful for interaction over long distances where no speech information is available (Kim
et al. 2010).

When concentrating on the aspect of advertising it has become more and more popular to display
electronic advertisements on large displays like plasma panels. But most of these "electronic
posters" provide only one�way information lacking interactivity (Fukasawa, Fukuchi, and Koike
2006). In combination with the latest approaches in computer vision it is possible to let the user
interact with those large screens by gestures. This active involvement attracts attention in a way
static advertisements can't and is therefore a promising market sector for the future.

We created an implementation of an advertisement program where a hummingbird �ies around
the shape of interacting users. When one of them stretches his or her arm, a �ower grows out of
his or her �ngertip and attracts the bird's attention (Figure 1).

Figure 1: In our implementation, a hummingbird �ies around a �ower growing out of the user's
hand.

To achieve this, we need to implement a robust algorithm detecting the gesture of an outstretched
arm. This thesis will concentrate on this topic and analyze di�erent approaches and ideas, which
can be used for an implementation of a proper algorithm. We prove that, with the usage of
Microsoft's Kinect sensor and the established and well researched driver setup, the extraction of

1. http://www.gesturetek.com
2. http://www.reactrix.com
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the user's skeleton data works reliable using the OpenNI Framework3 or the Kinect for Windows
SDK4. Because of that, the recognition of the arm position can be done pretty easily, but to
identify an outstretched arm correctly, it is important to take the orientation of the �ngertips also
in account as you can see in Figure 2.

(a) Fingertips pointing down (b) Fingertips pointing up

Figure 2: The hand's orientation of an outstretched arm can be identi�ed by extracting the
�ngertip positions. In our use case only the gesture of an outstretched arm with �ngertip positions
pointing upwards should be detected.

As a result, the recognition of the user's �ngertips remains a challenging task because of the low
resolution of the Kinect sensor in comparison to the size of a human hand in the scene (Ren,
Yuan, and Zhang 2011). So we need to evaluate di�erent approaches for solving this issue too.
Based on our theoretical evaluation we will implement an algorithm that detects the gesture of
an outstretched arm and integrates it as crucial part for our advertisement program. Finally, we
will review the practical results gained by executing our �nal implementation for justifying the
decisions we made in our theoretical evaluation.

1.2 Practical Setup

Our program has been implemented using the Cinder library5 in combination with CADET's
2RealKinectWrapper6. The decision to this wrapper has been made because it natively supports
both the OpenNI Framework and the Kinect for Windows SDK. As a result, the user bene�ts of
this high level of abstraction by choosing the drivers of his or her choice.

The software is targeted on being displayed on a plasma or LCD panel in Full HD resolution while
a Kinect sensor (or any other depth camera that is supported by the framework) tracks the user's
actions. Users, who enter or leave the screen, should be tracked and recognized in real time while
a hummingbird �ies around their shape and reacts accordingly. More detail on the hummingbird's
degree of interaction will be proposed in Chapter 3.1.2.

One of the most important points for seamingless and believable interaction within the context
of our setup is the implementation of a stable and reliable gesture detection algorithm as pointed
out in Chapter 1.1.

1.3 Requirements

Since this thesis emphasizes on the correct recognition of hand gestures, we'll provide a basic
overview over the requirements that the algorithm of our choice needs to ful�ll:

3. http://www.openni.org
4. http://www.kinectforwindows.org
5. http://libcinder.org
6. http://www.cadet.at
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• No usage of markers, gloves or any other supporting devices that need additional attachment
to the user. His or her hand should be trackable without the help of any other devices. A fast
and stable interaction between user and software should be ensured without any boundaries.

• The gesture detection should be translation and scale invariant, allowing occurrence in any
part of the image as long as skeleton data is available.

• It should perform well even in challenging environments with di�cult lighting conditions
and cluttered backgrounds allowing robust hand tracking.

• Fingertip detection should work well within di�erent point of views to the user's hand,
especially to the side view, which is required for the detection of an outstretched arm.

• No usage of an extensible amount of training data, because it just adds an unwanted and un-
required amount of complexity to our solution, which should only be capable of the detection
of one simple gesture.

1.4 Research Question and Scienti�c Methods

Because of the vast amount of research and solutions for gesture detection we mainly concentrate on
the �eld of �ngertip and hand gesture recognition using depth cameras. Solutions for this problem
include algorithms based on convex hull, the calculation of the Finger�Earth Mover's Distance,
curvature morphology and k�curvature estimation. Before introducing these topics we'll give a
basic overview over techniques handling gesture recognition in general. Later on we'll evaluate
all these e�orts in comparison to the requirements outlined in Chapter 1.3. The algorithm which
ful�ls the requirements best within our theoretical evaluation will be considered for our practical
implementation.

Finally, our research leads to following research question, which should both evaluate the feasibility
and the algorithm of our choice for stable arm detection in connection to our use case:

How can the detection of �ngertips, derived from the Kinect's depth image, be used

to improve a stable detection of an outstretched hand in an interactive setup?

2 Gesture Recognition

Gesture recognition has become a widely and overly well researched topic within the last decade.
Because of the enormous amount of information we'll provide general de�nitions and restrains
regarding our use case.

Weinland, Ronfard and Boyer classify gesture recognition as sub�topic of visual action recogni-
tion besides facial expression recognition and movement behavior recognition for video surveil-
lance (Weinland, Ronfard, and Boyer 2011, 4). Furthermore, they de�ne the generic term action
recognition as following:

"Action recognition is the process of naming actions, usually in the simple form of
an action verb, using sensory observations. Technically, an action is a sequence of
movements generated by a human agent during the performance of a task. As such,
it is a four�dimensional object, which may be further decomposed into spatial and
temporal parts." (Weinland, Ronfard, and Boyer 2011, 4)

For our implementation in Chapter 3 and the theoretical debate within the current chapter we
are only concerned with visual observations by means of a video camera. The decomposition and
analysis of spatial and temporal sequence of movements will be handled by the software using one
or more suitable algorithms, which will be introduced in the following paragraphs.
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Additionally, we need to de�ne the general terminology of movement and activity. Bobick de�nes
those terms within the context of our research as following:

"Movements are the most atomic primitives, requiring no contextual or sequence knowl-
edge to be recognized; movement is often addressed using either view�invariant or
view�speci�c geometric techniques. Activity refers to sequences of movements or states,
where the only real knowledge required is the statistics of the sequence." (Bobick 1997)

These very basic de�nitions are important for our research since they form the foundation for all
of the topics treated within this thesis.

2.1 Hardware Setup

Our implementation is based upon the usage of the Kinect sensor, which has initially been intro-
duced by Microsoft in November 2010 for the Xbox 360 architecture. The device includes a RGB
camera, a depth sensor and a multi�array microphone, which for instance allows interaction by
capturing gestures, body motion, facial expressions or the usage of spoken commands (Microsoft
Corporation 2010). Figure 3 o�ers a basic overview over the hardware architecture of the Kinect
hardware.

Figure 3: This �gure contains an overview over Kinect's hardware components (Raheja, Chaud-
hary, and Singal 2011).

Our implementation is based upon this technology because of the following reasons:

• There is lot of research in the context of gesture recognition and Kinect in progress, allowing
us the usage of various well developed and proven frameworks like NITE or skeletal tracking
outlined in Chapter 3.2.1.

• The consumer price is relatively low for a depth camera and so the �nancial costs even for
multiple setups of our program are still a�ordable.

• Microsoft actively supports community development of various applications for this hardware
and developers by providing a well documented and extensive SDK.

• Kinect is accessible by usage of drivers developed by the company PrimeSense, which ad-
ditionally o�ers compatibility to other depth cameras which can also be accessed through
these drivers.
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2.2 Survey of General Methods and Algorithms

In this chapter we will evaluate some of the most popular approaches in gesture recognition
algorithms in general and more speci�cally how they can be used for detecting and interpreting
hand gestures. The advantages and limitations of each solution will be evaluated with attention
to our implementation.

2.2.1 Dynamic Time Warping

Doliotis et al. deployed a translation� and scale�invariant gesture recognition algorithm based
on Dynamic Time Warping (DTW) calculated upon depth and color images gathered from the
Kinect sensor (Doliotis et al. 2011).

DTW is a robust distance measure for time series and detection of similar shapes. A big advantage
of this technology is its �exibility with usage in several �elds such as science, medicine, industry
and �nance. All these applications have in common that they need to �nd the best match to a
query time series from a pool of candidates (Keogh and Ratanamahatana 2005).

Doliotis et al. describe the similarity measure of Dynamic Time Warping as following:

"The DTW algorithm temporally aligns two sequences, a query sequence and a model
sequence, and computes a matching score, which is used for classifying the query
sequence." (Doliotis et al. 2011)

There is a vast amount of further literature available which tackles this algorithm in more detail,
like for instance Keogh's and Ratanamahatana's paper handling indexing using DTW (Keogh and
Ratanamahatana 2005).

We won't examine DTW any further, because the disadvantages discussed by Doliotis et al. make
algorithms based on DTW unsuitable for our implementation. DTW requires a perfect hand
detector and assumes that it receives the perfect hand location for every frame. Another restriction
is the viewpoint invariance of their implementation. They assume that the user always faces the
camera for a frontal view of the gesture (Doliotis et al. 2011).

This is a highly unwanted limitation for our setup, where gestures should be traceable within
various point of views.

2.2.2 Hidden Markov Models

Derpanis mentions that "Hidden Markov Models (HMMs) by far have received the most attention
in literature for classifying gestures" (Derpanis 2004, 9). Before Starner, Weaver and Pentland
�rstly introduced HMMs for hand gesture recognition they were prominently and successfully
used for speech and handwriting recognition (Starner, Pentland, and Weaver 1998).

The statistical methods of Markov source or hidden Markov modeling have initially been studied
and introduced in the late 1960s and early 1970s. They try to characterize real�world signals (like
for instance speech samples, temperature measurements or music) in terms of signal models (Ra-
biner 1989).

Derpanis de�nes the architecture of HMMs as following:

"An HMM consists of a number of hidden states, each with a probability of transi-
tioning from itself to another state. The transitioning probabilities are modeled as
nth order Markov processes (i.e. the probability to transitioning to a new state only
depends on the n previous states visited)." (Derpanis 2004, 10)
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Also, the topology allows states to transition to themselves, which give HMMs a high degree of
time�scale invariance (Figure 4). For recognizing gestures "an HMM is constructed for each of the
gestures under consideration" (Derpanis 2004, 10).

Figure 4: An overview over hidden states of a Markov model: si denotes a state and aij the
probability of a state transition from state i to j (Derpanis 2004, 10).

For gathering more information about HMMs and an overview over algorithms we recommend
Rabiner's and Juang's introductional article (Rabiner and Juang 1986). We won't go into more
detail here because of the disadvantages discussed in the next paragraph.

In practice, Starner's, Weaver's and Pentland's attempt in using HMMs for the detection of Amer-
ican Sign Language features high accuracy in detection of various gestures. But in order to un-
derstand di�erent subjects with their own variations of language they require collecting enormous
amounts of di�erent data (Starner, Pentland, and Weaver 1998).

In comparison to the requirements for our implementation the collection of training data is a
major �aw. The amount of work in collecting this data is disproportionate to the complexity
of our implementation where only one gesture needs a stable detection. Additionally, Derpanis
mentions two more disadvantages leading to unwanted complexity:

"A signi�cant problem is that there is no principled way of de�ning the topology (i.e.
number of states, number of transitions). Instead, de�ning the topology relies on edu-
cated guesses or trial and error, which is a non�trivial task when attempting to model
a large gesture language. Another disadvantage lies in the Markovian assumption of
transitioning from one state to the next. This assumption does not in general map
well to real�world processes." (Derpanis 2004, 10�11)

Because of these reasons we won't rely on algorithms based on HMMs for �nding the gesture of
an outstretched arm.

2.2.3 CONDENSATION

Black and Jepson employed a framework that uses the CONDENSATION algorithm for gesture
recognition. Their approach can be interpreted as a generalization of HMMs discussed in Chap-
ter 2.2.2, because they also allow a set of states and transitions between them. As for state
recognition, their algorithm "involves the probabilistic matching of an entire temporal trajectory
model that represents a portion of the gesture" (Black and Jepson 1998, 911). They mention that
their interpretation works "similar to DTW but within a uni�ed probabilistic framework" (Black
and Jepson 1998, 911).

The CONDENSATION algorithm itself has initially been proposed by Isard and Blake. They
de�ne CONDENSATION as following:

"It uses 'factored sampling', a method previously applied to interpretation of static
images, in which the distribution of possible interpretations is presented by a randomly
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generated set of representatives. The CONDENSATION algorithm combines factored
sampling with learned dynamical models to propagate an entire probability distribution
for object position and shape, over time." (Isard and Blake 1996, 343)

They note that their implementation of motion tracking within image or movie sequences works
e�ective in clutter (Figure 5) (Isard and Blake 1996, 354). Black and Jepson used CONDEN-
SATION only for recognition, while the trajectories of gestures have been estimated using color
markers (Black and Jepson 1998, 923). Doliotis et al. state as disadvantage of the usage of CON-
DENSATION in comparison to DTW that the algorithm needs additional knowledge about the
observation and propagation density (Doliotis et al. 2011).

Figure 5: When only tracking the edges it occurs that there are many clutter edges that distract
the system, while the CONDENSATION algorithm succeeds in tracking the hand through this
distractions (Isard and Blake 1996, 355).

A main limitation of CONDENSATION in reference to our use case is once more the need to record
user data before being able to recognize gestures accurately. Additionally, the examples performed
within Black's and Jepson's framework for testing and evaluating gesture recognition are rather
coarse as they concentrate on tracking the hand position using some sort of physical icon (Black
and Jepson 1998, 915). Both the constrains on using supporting devices for the tracking and
comparison of gestures and the limitation, that their framework is not able to interpret gestures
with a high amount of samples in real time (Black and Jepson 1998, 923), lead us to the decision
to refrain from the idea of using CONDENSATION algorithms for gesture recognition.

2.2.4 Body Part Recognition based on Depth Imaging

Since our implementation is based upon Microsoft's Kinect sensor, an analysis of the methods
used for skeletal tracking provided by the SDK and a veri�cation if they are reliable enough for
stable gesture recognition seems reasonable.

Shotton et al. from Microsoft Research recognize the human shape by depth imaging, which o�ers
several advantages over traditional intensity sensors like the ability to work in low light levels or
being color and texture invariant. They captured a large database of motion capture of human
actions and de�ned several localized body parts (Figure 6). Algorithms based on randomized
decision forests are responsible for the task in disambiguating these trained body parts (Shotton
et al. 2011).

Sharp managed to implement a method that can evaluate and train decision trees entirely on
the GPU, which creates results for object recognition � identical to those obtained on a CPU
� within one percent of the time compared to the calculation on CPUs (Sharp 2008, 606). He
explains the main course of actions as following:

"In computer vision techniques, the input data typically correspond to feature values
at pixel locations. Each parent node in the tree stores a binary function. For each
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Figure 6: Shotton et al. captured a large database of motion capture of human actions with
attention to variety in pose, shape, clothing and crop (Shotton et al. 2011).

data point, the binary function at the root node is evaluated on the data. The function
value determines which child node is visited next. This continues until reaching a leaf
node, which determines the output of the procedure. A forest is a collection of trees
that are evaluated independently." (Sharp 2008, 596)

The trees are trained on sets of these synthesized pictures of user's body parts with a random
subset of example pixels from each image. They consist of split and leaf nodes as you can see in
Figure 7. In more detail, the following steps are performed within the generation of training data:

"Each split node consists of a feature fθ and a threshold τ . To classify pixel x in image
I , one starts at the root [...], branching left or right according to the comparison to
threshold τ . At the leaf node reached in tree t , a learned distribution Pt(c|I , x ) over
body part labels c is stored. The distributions are averaged together for all trees in

the forest to give the �nal classi�cation P(c|I , x ) = 1
T

T∑
t=1

Pt(c|I , x )." (Shotton et al.

2011)

Figure 7: "A forest is an ensemble of trees. Each tree consists of split nodes (blue) and leaf nodes
(green). The red arrows indicate the di�erent paths that might be taken by di�erent trees for a
particular input" (Shotton et al. 2011).

Shotton et al. come to the conclusion that "proposals for the 3D locations of body joints can be
estimated in super real�time from single depth images" (Shotton et al. 2011). Their results "show
high correlation between real and synthetic data, and between the intermediate classi�cation and
the �nal joint proposal accuracy" (Shotton et al. 2011). Additionally, they mention the high
performance their algorithm can achieve when the computation takes place on the GPU.

Because of these promising results we'll rely on data gathered by their implementation of body
part recognition for our pose estimation. As already pointed out, the usage of the Kinect's depth
image for skeletal tracking guarantees stable and reliable results even in challenging environments.
Another reason crucial for our decision is the fact that we don't need to gather any training data
for our implementation, because the work has already been done within the creation of trained
decision forests.
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Summing up, body part recognition by Shotton et al. provides a setup that ful�lls almost all of
our requirements de�ned in Chapter 1.3. Beside the usage of their data for our implementation
of pose estimation we need to take care of an implementation of a stable algorithm for detecting
�ngertips.

2.3 Recognition of Hand Gestures and Finger Positions

As stated in Chapter 2.2.4, the usage of skeleton data allows us an easy detection of arm ges-
tures, but we additionally need to track the user's �nger positions for a reliable detection of an
outstretched arm. Ren, Yuan and Zhang describe the main problem for the implementation of a
stable and reliable algorithm, which is able to track hand gestures and �nger positions, as following:

"As for the gesture recognition, even with the Kinect sensor, it is still a very challeng-
ing problem. Because typically, the resolution of a Kinect sensor is only 640 x 480.
Although it works well to track a large object, e.g. the human body, it is di�cult to
detect and segment precisely a small object from an image at this resolution, e.g., a
human hand that occupies a very small portion of the image." (Ren et al. 2011)

Good examples for this issue are illustrated in Figure 8.

Figure 8: Here are a few examples of challenging cases listed, where hand gesture recognition using
depth cameras may fail. While the �rst and second hand have the same gestures, the third hand
confuses the recognition (Ren, Yuan, and Zhang 2011).

Fortunately, a few techniques that overcome these limitations have been introduced. The results
of these approaches will be evaluated within the next chapters. As for the requirements of our use
case listed in Chapter 1.3 we'll mainly focus on the detection of �ngertips.

2.3.1 Shape Detection using Convex Hull

Multiple solutions in extracting �ngertip positions around a hand position by usage of a convex
hull have been published (Cristina Manresa and Perales 2005; Frati and Prattichizzo 2011).

By de�nition, the convex hull of a set of points is the smallest convex set containing them (Buss
2003, 117). Figure 9 illustrates an example.

Frati and Prattichizzo explain an easy and straightforward way in extracting the �ngertip positions
by using functions provided by the OpenCV framework. Since we already use functionality of this
framework for background subtraction within our implementation, their solution could easily be
integrated into our work without generating any additional dependencies.

They determine the convex hull by the following steps:

"The function used to �nd the contour for objects in OpenCV is cvFindContours(): it
takes a binary image and returns the number of retrieved contours. The binary image
is computed from the cropped image. Once the contour is obtained, it is possible to
compute its convex hull using the OpenCV function cvConvexHull(). The points of
the hull represent the external contour of the hand, from the wrist to the �ngers if the
hand is open." (Frati and Prattichizzo 2011)
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Figure 9: The convex hull of a planar set of points representing the smallest convex set containing
them (Fisher 2004).

Next, they need to determine convexity defects, which represent points that are farthest away
from the edge of the hull (Bradski and Kaehler 2008, 260) as you can see in Figure 10.

Fratti and Prattichizzo explain the corresponding implementation in OpenCV as following:

"This set of points is necessary for the function used to identify the �ngers: cvCon-
vexityDefects(). The routine takes the contour and the convex hull and it computes
the defects of convexity returning for each defect a structure with the start point, cor-
responding to the tip of a �nger, the depth point and the end point, corresponding to
the tip of the adjacent �nger." (Frati and Prattichizzo 2011)

While their results seem promising, we detected a major disadvantage, which will make solutions
based on segmentation via convex hull and convexity defect not suitable for our implementation:
They assume that the largest part of the hand needs to be visible for correct results. Also, no
occlusions of the hand should occur. And, even more discouraging, they mention that "the worst
condition generating occlusions is when the �ngers are perpendicular to the Kinect camera plane
xy" which may occur approximately in our use case within the pose of an outstretched arm.

As a result, an implementation based on �nger detection via convex hull and convexity defect
doesn't ful�ll our requirements of a stable �ngertip detection within di�erent point of views and
won't be considered for implementation.

2.3.2 Finger�Earth Mover's Distance

For addressing the main problem of tracking hand and �nger positions discussed in Chapter 2.3
Ren, Yuan and Zhang introduced a shape distance metric called Finger�Earth Mover's Dis-
tance (FEMD).

In the beginning, they collect hand gesture datasets for each gesture they want to detect. They
collect the data in uncontrolled environments, where the subject poses with variations. For correct
data retrieval the user's hand must be the frontmost object facing the sensor and he or she needs
to wear a black belt around the gesturing hand. Next, they record the relative distance between
each contour vertex to the hand's center point and represent it as a time series curve (Figure 11)
(Ren, Yuan, and Zhang 2011).
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Figure 10: While the dark contour is the convex hull around the hand, the gridded regions (A�H)
are convexity defects relative to the convex hull (Bradski and Kaehler 2008, 259).

As for gesture recognition they do the following:

"With the hand shape and its time�series representation, we apply template matching
for robust recognition, i.e., the input hand is recognized as the class with which it has
the minimum dissimilarity distance: c = arg min

c
FEMD(H ,Tc), where H is the input

hand; Tc is the template of class c; FEMD(H ,Tc) denotes the proposed Finger�Earth
Mover's Distance between the input hand and each template." (Ren, Yuan, and Zhang
2011)

The Finger�Earth Mover's Distance is based upon the Earth Mover's Distance, which measures
the distance between signatures of histograms (Rubner, Tomasi, and Guibas 2000).

Ren, Yuan and Zhang describe the basics of the Earth Mover's Distance as following:

"It is named after a physical analogy that is drawn from the process of moving piles of
earth spread around one set of locations into another set of holes in the same space. The
locations of earth piles and holes denotes the mean of each cluster in the signatures,
the size of each earth pile or hole is the weight of cluster, and the ground distance
between a pile and a hole is the amount of work needed to move a unit of earth. To
use this transportation problem as a distance measure, i.e., a measure of dissimilarity,
one seeks the least cost transportation � the movement of earth that requires the least
amount of work." (Ren, Yuan, and Zhang 2011)

Based on this idea they altered the features of an Earth Mover's Distance algorithm applied for
contour matching to make it work for hand gesture recognition by considering "the input hand
as signature with each �nger as a cluster". More detail covering the calculation of this procedure
can be found in their paper (Ren, Yuan, and Zhang 2011).

Before measuring the FEMD they need to detect the �ngers from the hand shape by extracting
the peaks of the time series curve. As mentioned before, the gestures will be detected within the
minimum dissimilarity distance of the FEMD (Ren, Yuan, and Zhang 2011).
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Figure 11: First of all, the rough hand is segmented by depth thresholding. The detection turns
out being more accurate by using the black belt. With the help of the initial point (red) and the
center point (cyan) a time�series curve represenation is drawn (Ren, Yuan, and Zhang 2011).

According to their test results the gesture detection of the FEMD algorithm of Ren, Yuan and
Zhang works very well even within di�erent orientation and scale changes of the hand. As �nal
result their detection works pretty reliable with detection rates over 90 percent (Ren, Yuan, and
Zhang 2011).

In relation to our implementation an algorithm based on FEMD will most certainly work very
well, but since the recorded training data is not available to the public we would need to record
and interpret our own set of gestures for an outstretched arm. Since this task increases the e�ort
for a successful implementation to an unwanted level of complexity we'll continue evaluating other
approaches.

2.3.3 Curvature Morphology and Support Vector Machines

Ambrus and Mohamed use the concept of curvature morphology as silhouette �lter to detect the
positions of �ngertips of a hand image (Ambrus and Mohamed 2011, 20).

Their research is based on the conclusions of Leymarie's and Levine's research on this topic.
They extract curvatures of planar curves for representation and interpretation of objects in an
image (Figure 12) (Ambrus and Mohamed 2011, 20). Curvatures are "a measure of the rate of
change in orientation at each point along a curve" (Leymarie and Levine 1988, 1). The main �ow
of actions is stated as following:

"In a typical computer vision system, discrete contours of objects are �rst extracted
from an image. Curvature of these discretized contours is then approximated and used
to detect important features of the boundary of an object." (Leymarie and Levine
1988, 1)

Ambrus and Mohamed analyze the curvature along the boundary of a hand shape for gaining the
�nger data. Leymarie and Levine use functions of mathematical morphology to extract dominant
shapes within a curve (Leymarie and Levine 1988, 9). With attention to our implementation
the extraction of �ngertips might work out, but for detecting our gesture it is enough when we
concentrate on �nding the local maxima and minima of this curve (Munshi 2011) as proven in
Chapter 3.2.2.

For guaranteeing a precise �ngertip detection the problem of classifying which peaks are �ngertips
and which are not is still remaining. Ambrus and Mohamed use support vector machines for
solving this issue (Ambrus and Mohamed 2011, 21).
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Figure 12: With the help of curvature morphology the peaks and valleys of the shape are analyzed
to di�erentiate �ngers (Ambrus and Mohamed 2011, 20).

Cortes and Vapnik de�ne such a support�vector network as "a learning machine for two�group
classi�cation problems" (Cortes and Vapnik 1995, 273). In other words, support vector machines
are used to classify data that belong to one of two classes, which would be in our use case the
classi�cation of the peak height of the curve and whether or not it belongs to the "class" �nger-
tips (Ambrus and Mohamed 2011, 21). The following idea is implemented:

"It [the support�vector network] maps the input vectors into some high dimensional
feature space Z through some non�linear mapping chosen a priori. In this space a linear
decision surface is constructed with special properties that ensure high generalization
ability of the network." (Cortes and Vapnik 1995, 274)

In order to �nd such a separating hyperplane, a small amount of training data (which are the
support vectors) has to be taken in account for de�ning this margin (Figure 13) (Cortes and
Vapnik 1995, 275). For our implementation the �nding of such a separating hyperplane remains a
challenge as we need to conduct training data for gathering �nger data.

Figure 13: In this example of a seperate problem the support vectors (marked with grey squares)
"de�ne the margin of largest seperation between the two classes" (Cortes and Vapnik 1995, 275).

Additionally, we won't necessarily need to implement a support vector machine for correct iden-
ti�cation of �ngertips of an outstretched arm , since we are only interested in the orientation of
the �ngers. Also the collection and elaboration of training vectors might also be a too extensive
task for the detection of a single gesture.
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2.3.4 K�Curvature Estimation

As stated in Chapter 2.3.3 the stable detection of a single �ngertip might be enough for a robust
implementation of the recognition of an outstretched arm, since we are only interested in the
orientation of the �ngers.

For their implementation of a virtual 3D blackboard Wu, Shah and Vitoria Lobo were also only
interested in an implementation of a stable detection of the user's �ngertip. While traversing along
the pixel of an arm contour they use an approximation to k�curvature, "whose measure is de�ned
by the angle between two vectors [P(i ; k);P(i)] and [P(i);P(i + k)], where k is a constant and
P(i) = (x (i), y(i)), the list of contour points" (Wu, Shah, and Vitoria Lobo 2000). See Figure 14
for details on �nding features of a human hand using k�curvatures.

Figure 14: In k�curvature estimation �ngertips are detected by measuring the angle between two
vectors [P(i ; k);P(i)] and [P(i);P(i + k)] (Trigo and Pellegrino 2010).

While they concentrate only on �nding one single �nger point, they calculate the dot product for
each point on the outline:

"For appropriate values of k , the value of the dot product can be used to �nd the
�ngertip. If we take a pixel near the �nger and extend two vectors k pixels away along
the outline, the vectors will point in similar directions and thus will have a high value of
a dot product. The vectors formed at a pixel on the arm will have a large but negative
dot product. Thus, we compute the dot product for all outline pixels and �nd the
highest values. Typically, there is a unique highest value, which is the �ngertip. When
multiple pixels have equally high dot products, we choose the pixel that is closest to
the previous �nger position." (Wu, Shah, and Vitoria Lobo 2000)

The basic idea behind this approach sounds promising and easy to implement but indicates also
two troubles. For gesture recognition the number of detected �ngers is detected properly but can
produce false positive answers for gestures with similar curves. Since we won't distinguish between
a multiple set of constants within our implementation this trouble is irrelevant. Another problem
is that the constant k must be de�ned properly in order to make the recognition work appropriate
(Trigo and Pellegrino 2010). Since the scaling of the hand analyzed by our implementation tends
to be highly invariant from user to user the constant needs to be de�ned in comparison to the size
of the user's hand to make it work properly.

Summing up, �ngertip detection based on the k�curvature algorithm o�ers us a straightforward to
implement solution for our problem without requiring any training data by simply detecting the
local maxima of the curve around the hand's shape. The only remaining problem, which needs
evaluation throughout our implementation, is the calculation of the value for the constant k . The
value should be based and altered upon the size of the user's hand in order to gather reliable data
for guaranteeing scale invariance.
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3 Implementation

We implemented a program that uses the Kinect sensor for interaction with users. In this setup
the scene is recorded and displayed on a plasma or LCD panel in Full HD resolution. The program
has been implemented in C++ using Visual Studio 2010.

The display and interaction logic is based upon the Cinder library, because it is a free and open
source library that is widely in use for the implementation of interactive setups. Also it natively
delivers a wide variety of features, which have been used during the implementation, like for
instance a XML parser or the possibility to add GUI elements for altering and storing con�guration
parameters during execution.

As for image processing we use the OpenCV library, because it "was designed for computational
e�ciency and with a strong focus on real�time applications" (Bradski and Kaehler 2008, 1). Also
there are appropriate functions available allowing native usage of OpenCV functions within the
Cinder framework.

In our test environment the data of the Kinect sensor will be accessed through PrimeSense's
OpenNI drivers. We do this by usage of the 2RealKinectWrapper developed by the CADET
research team. The wrapper allows easy access on depth and RGB images and also user's skeleton
data provided by the Kinect hardware. Additionally, it also supports the Kinect for Windows
SDK7 deployed by Microsoft.

Because of these features, possible future versions of our implementation, which has currently only
been built and tested on Windows 7 Professional using OpenNI drivers, can be ported for other
platforms like Linux or Mac or used for one of the two major Kinect frameworks without deploying
major changes in the code base.

3.1 Overview

On startup, only the RGB image of the Kinect sensor will be displayed on a screen. When the
user enters the scene and the Kinect driver detects a new user shape a hummingbird appears. The
bird itself consists of �ying and turning animations stored in a 2D spritesheet. As next step the
hummingbird will be scaled according to the current user size by detecting skeleton points of the
user's neck and the user's head and calculating the length of a vector between these two positions
as seen in Listing 1.

As long as no gesture is detected, the bird �ies around the user's shape randomly and switches
between the states discussed in Chapter 3.1.2. When we detect the gesture of an outstretched
arm, the bird knocks against the user's �ngertips and activates a �ower, which will grow out of the
user's palm (Figure 1). As long as the user maintains his or her gesture the bird will be attracted
to the �ower. Otherwise it will continue �ying around the user's shape. The whole �ow of actions
is demonstrated in Figure 15.

3.1.1 Scene States

In the beginning, our setup will be executed in an init state, where all the logic for initialization and
asset loading is performed. In more detail, the most important tasks operated are the loading of the
sprite images for the bird and �ower animations and the initialization of the 2RealKinectWrapper
for accessing camera data. When any step during initialization fails, our program will switch into
an error state, where the cause of failure will be prompted before it stops execution.

When the initialization succeeds, the program switches to an idle state, where the RGB image of
the Kinect sensor will be displayed without any further interaction. After Kinect's driver setup

7. http://www.kinectforwindows.org
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Listing 1: KinectManager.cpp: calculating the birdheight by detecting the skeleton points of the
user's neck and head

267 for(unsigned int i = 0; i < kinect ->getNumberOfSkeletons (0); ++i)

268 {

269 _2RealKinectWrapper :: _2RealPositionsVector3f skeletonPositions;

270 skeletonPositions = kinect ->getSkeletonScreenPositions (0, i);

271

272 if( kinect ->isJointAvailable

273 (_2RealKinectWrapper :: _2RealJointType :: JOINT_HEAD) &&

274 kinect ->getSkeletonJointConfidence

275 (0, i, _2RealKinectWrapper :: _2RealJointType :: JOINT_HEAD)

276 .positionConfidence > 0.0f &&

277 kinect ->isJointAvailable

278 (_2RealKinectWrapper :: _2RealJointType :: JOINT_NECK) &&

279 kinect ->getSkeletonJointConfidence

280 (0, i, _2RealKinectWrapper :: _2RealJointType :: JOINT_NECK)

281 .positionConfidence > 0.0f)

282 {

283 ci::Vec2f headPosition = ci:: Vec2f(

284 skeletonPositions[_2RealKinectWrapper :: _2RealJointType :: JOINT_HEAD ].x,

285 skeletonPositions[_2RealKinectWrapper :: _2RealJointType :: JOINT_HEAD ].y);

286

287 ci::Vec2f neckPosition = ci:: Vec2f(

288 skeletonPositions[_2RealKinectWrapper :: _2RealJointType :: JOINT_NECK ].x,

289 skeletonPositions[_2RealKinectWrapper :: _2RealJointType :: JOINT_NECK ].y);

290

291 birdHeight += (( headPosition - neckPosition) * scaleVector ). length ();

292 }

293 }

294

295 // when there are more users use the average size

296 if(hasUsers ())

297 birdHeight /= kinect ->getNumberOfUsers (0);

was able to detect a new user in the scene, our setup will switch into a playing state where the
hummingbird with all the interaction states discussed in chapter 3.1.2 will emerge. Figure 16
contains a class diagram containing all those states.

3.1.2 Interaction States

By default, the hummingbird is �ying around the user's shape. This behavior is achieved by �ying
to a random end point on the screen. When the end position has been arrived, the bird waits for a
random amount of time and continues �ying towards the next random position. When the user's
shape overlaps with the bird's current position (for instance if the user stretches his arm towards
the hummingbird) its state will change into a leaving shape state where it seeks the shortest path
out of the user's shape. This feature allows an additional form of interaction where the bird can
be driven through the scene by the user's movements. The state changes between these important
states is shown in Figure 17.

When a new user is detected by the Kinect framework, the hummingbird will interrupt the �ying
behavior and �y to a position near the newly entered user's head. As for gesture recognition, after
detection of an outstretched hand the hummingbird �ies towards the user's hand and "activates"
the �ower. Then it keeps on circling the �ower till the user stops stretching his arm. All the
possible bird states are displayed in Figure 18.
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Figure 15: This diagram demostrates the bird's state changes when a gesture of an outstretched
arm is detected.

Figure 16: This �gure features all classes that have been implemented as scene states.

3.2 Used Methods and Algorithms

After delivering a general overview over the features implemented in our software (as outlined in
Chapter 3.1) we'll go into more detail here. Within the context of our research, we'll speci�cally
deal with the implementation of the gesture recognition of an outstretched arm in more detail.

To achieve this, we split the problem into two major tasks. First of all, we roughly estimate the
user's pose for detecting whether the user's arm is in a valid position for an outstretched arm or
not. When this �rst check is positive, we extract the position of the user's �ngertip to derivate
the hand's orientation. When both criteria are met, we interpret the user's gesture as the gesture
of an outstretched arm.

3.2.1 Pose Detection

In chapter 2.2 we estimated algorithms capable of general estimation and detection of human
shapes and gestures. As we came to the conclusion that skeleton data provided by the Kinect
driver software o�ers us a well researched and reliable fundament for our implementation, we'll
extract and interpret skeleton points provided by the 2RealKinectWrapper.

Several joint positions of the user are accessible through the 2RealKinectWrapper. As you can
see in Listing 2, a few of them are not supported by one of the two target frameworks, while the
detection of �ngertip positions is currently unsupported by both frameworks.

Since the hummingbird should not intersect with the shape of the user, we are only interested
in �nding an outstretched arm where the arm is not aiming towards the camera (Figure 1).
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Figure 17: Once the user's shape overlaps with the bird's current position or a gesture is detected
it interrupts it's default behavior.

Additionally, the framework of the 2RealKinectWrapper o�ers us easy access to the joint positions
outlined in Listing 2 once the user's skeleton data has been calibrated.

We came up with good results by calculating the angle between arm and elbow position and
checking whether the value lies between a threshold de�ning how "far" the arm can be stretched.
To achieve this, we calculate the arc tangent of the arm vector by using the atan2-function provided
by C++8, which gives us the orientation of the vector considering the current quadrant. This works
for both hands, but we need to consider that we need to subtract 180 degrees from the left hand
vector since it faces in the opposite direction (Listing 3).

3.2.2 Fingertip Detection

In Chapter 2.3.4 we came to the conclusion, that the usage of an algorithm based on k�curvatures
for �ngertip detection might be a reliable solution for our implementation. As for curvature
calculation, our implementation is based on Wu's, Shah's and Vitoria Lobo's research on �nger
tracking using an approximation of k�curvature by estimating the angle between two vectors using
the dot product (Wu, Shah, and Vitoria Lobo 2000).

The main idea behind our algorithm is to �nd the �ngertip positions on a binary image displaying
the user's arm. Additionally, we need to measure the relative position of the hand and elbow
position within this image to outline the hand image. In practical usage, the binary image is
equivalent to the user image, which can easily be accessed through the 2RealKinectWrapper and
is computed on interpretation of the camera's depth image. The hand and elbow positions are
skeletal positions we already discussed in Chapter 3.2.1.

8. http://www.cplusplus.com/reference/clibrary/cmath/atan2/
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Figure 18: This �gure features all classes that have been implemented as bird states.

Test Application For testing and estimating the detection within our requirements, we set
up a small test application, which reads a binary image of an arbitrary size and calculates the
�ngertip positions. One of the main advances of an independent test application is, that we can
test and adjust our algorithm and its values fast and easily within an environment only focusing on
�ngertip detection. Additionally, our implementation can easily be integrated into our interactive
setup using the Kinect. All we need to do is to replace the binary image with the user image
provided by the Kinect software.

First of all, we calculate a parameter called hand size by determining the length of the vector
pointing from arm to elbow. We use this size for calculating a rough estimation of the region
around the user's hand (Figure 19). Next, we use functions of the OpenCV library to �nd all the
contour points of the user's hand. To improve the accuracy of this step, we ignore points that are
most likely not part of the hand's contour, such as points around the border or when the amount
of certain contour points is beyond a certain threshold. This eliminates erroneous behavior which
may for instance occur, when parts of other user shapes are part of the region of the target hand.
The whole process of contour retrieval and �ltering is outlined as commented code in Listing 4.

Figure 19: We use the length of the vector pointing from hand to elbowposition (green arrow) for
estimating the hand's boundary. Every side of the white square surrounding the user's hand has
the length of this vector.

As discussed in Chapter 2.3.4, we need to de�ne the constant k in comparison to the size of the
user's hand. The calculation of a value for this constant turned out to be a challenging task, as
our solution needs to be scale invariant and also deliver robust results within di�erent point of
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Listing 2: _2RealTypes.h: an overview over all joint types supported by the 2RealKinectWrapper

56 enum _2RealJointType

57 {

58 JOINT_HEAD = 0,

59 JOINT_NECK = 1,

60 JOINT_TORSO = 2,

61 JOINT_WAIST = 3, // currently not available for OPENNI

62

63 JOINT_LEFT_COLLAR = 4, // currently not available for OPENNI; WSDK

64 JOINT_LEFT_SHOULDER = 5,

65 JOINT_LEFT_ELBOW = 6,

66 JOINT_LEFT_WRIST = 7, // currently not available OPENNI

67 JOINT_LEFT_HAND = 8,

68 JOINT_LEFT_FINGERTIP = 9, // currently not available for OPENNI; WSDK

69

70 JOINT_RIGHT_COLLAR = 10, // currently not available for OPENNI; WSDK

71 JOINT_RIGHT_SHOULDER = 11,

72 JOINT_RIGHT_ELBOW = 12,

73 JOINT_RIGHT_WRIST = 13, // currently not available for OPENNI

74 JOINT_RIGHT_HAND = 14,

75 JOINT_RIGHT_FINGERTIP = 15, // currently not available for OPENNI; WSDK

76

77 JOINT_LEFT_HIP = 16,

78 JOINT_LEFT_KNEE = 17,

79 JOINT_LEFT_ANKLE = 18, // currently not available for OPENNI

80 JOINT_LEFT_FOOT = 19,

81

82 JOINT_RIGHT_HIP = 20,

83 JOINT_RIGHT_KNEE = 21,

84 JOINT_RIGHT_ANKLE = 22, // currently not available for OPENNI

85 JOINT_RIGHT_FOOT = 23

86 };

views. In general, the value for k needs to be high for a big hand size and low for a small hand size.
After evaluating several test images with di�erent scale and orientation we came to the conclusion,
that the k-value must have a limit value it should not go below (too small k-values won't produce
reliable results, as they are too susceptible to jittering) and also be in direct connection to the
amount of �ltered contour points. The �nal solution we came up with is described in Listing 5.

When we've calculated the k�value, we can �nally start iterating through the contour points and
draw a vector between [P(i − k ; k);P(i)] and [P(i);P(i + k)] as described in chapter 2.3.4. Like
Wu, Shah and Vitoria Lobo we use the dot product to draw conclusions to the angle between the
two vectors (Wu, Shah, and Vitoria Lobo 2000). The points with the highest negative values are
those with the highest peaks or highest valleys and therefore �ngertips or positions between them.

Also we experimented around with a value de�ning a minimum dot value which should indicate
the value from which �ngertips should be detected. After testing around with various images
we left it to zero, but it can be altered for possible future releases or adjustments. Whenever a
negative dot product switches back to a positive result, we know that we detected a �nger position
within the last dot products. The position where the calculation leads to the biggest value will be
detected as a position of interest. Listing 6 illustrates the whole course of actions.

Generating and Interpreting Test Data For testing and con�guring parameters of our al-
gorithm we took pictures of certain hand gestures behind a white wall and transformed them into
black and white displaying only the hand contour (Figure 20).



3 IMPLEMENTATION 21

(a) Hand pointing upwards, all �ngers visible (b) Hand pointing downwards, all �ngers visible

(c) Outstretched right hand, �ngers pointing upwards (d) Outstretched left hand, �ngers pointing upwards

(e) Outstretched hand pointing downwards (f) Outstretched arm, �ngers pointing downwards

Figure 20: We took pictures of six di�erent hand gestures, which we transformed into black and
white images for contour evaluation and �ngertip detection.

For testing the accuracy within di�erent hand sizes we scaled these images to di�erent sizes,
always with attention to the resolution in our �nal setup. Since the depth image of the Kinect
has a minimum size of 640 x 480 pixels, we decided to scale the hand images to the sizes 200 x
154, 100 x 77, 50 x 38 and 30 x 23 pixels to simulate realistic proportions.

Within the �rst two sizes we expect accurate results, but we also expect our algorithm to fail
on too small images since the hand details can't be extracted precisely on too small image sizes.
For every picture we measured a rough pixel position for the palm and the elbow position. With
this information, our algorithm should be able to detect �ngertip positions within these di�erent
contour images.

We captured six di�erent images handling typical situations that may occur frequently within our
�nal implementation. Figures 20a and 20b are not typical gestures of an outstretched arm and
will never be evaluated in our �nal implementation as the angle between palm and elbow exceeds
the threshold as discussed in chapter 3.2.1. Nevertheless, they are valuable for benchmarking the
robustness of our algorithm since they are the only ones where all �ngers are clearly visible in the
contour image.

One of the most di�cult tasks within testing and evaluating was the calculation of a k�value,
which is able to deliver good results within all these di�erent poses. While experimenting, we
came up with estimations that worked excellent and were able to fetch out all important �nger
details even on very low scale images. But they also tend to produce wrong results in other poses.
Our �nal estimation of the k�value is fully explained in Listing 5. While it is not able to maintain
all detail at low scale it is still able to detect the most important �ngertip orientation, which is
crucial for our implementation. The results produced by our implementation are summarized in
Table 1, Table 2 and Figure 21.

When comparing the results with the corresponding images in Figure 21, you may recognize that
our �nal results also include parameters for the valleys between the �ngers. Those parameters
will be ignored in our evaluation because of two reasons: Firstly, these coordinates can easily be
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(a) Results on Figure 20a (b) Results on Figure 20b

(c) Results on Figure 20c (d) Results on Figure 20d

(e) Results on Figure 20e (f) Results on Figure 20f

Figure 21: Our algorithm works accurate on the �rst two images within the higher scale, but
slightly loses detail on the last two images within the lower scale. The positions that have been
detected as �ngertips or valleys between �ngers are marked as red dots.

�ltered because of their nature (valleys are always between �ngertip coordinates) and secondly,
we don't need to �lter these entries since we are only interested in the �ngertip direction as stated
in Chapter 2.3.3.

As expected, the images with the smallest size tend to produce wrong results. Even the images
with a pixel size of 50 x 38 pixels sometimes include erroneous values. But when comparing the
image size of the hand to the pixel size of the Kinect's depth image, we come to the assumption
that in most use cases the hand size will �t to the arms displayed in our images with the size
100 x 77 pixels.

In comparison to our analysis in Table 1 and Table 2 we come to the theoretical conclusion, that
our implementation of �ngertip detection will work accurate in our practical setup. For justifying
our assumptions we adapted the algorithm explained in this chapter for our �nal software setup.
The corresponding results will be explained in the next chapter.

3.3 Final Results

The gesture of an outstretched arm should only be recognized when the user's hand is outstretched
and the �ngers are pointing upwards.

In our �nal setup, pose detection, as described in Chapter 3.2.1, works pretty well as long as
skeleton data is available. When the angle between the user's elbow and hand is between a
prede�ned threshold, we further examine the �ngertip positions to draw conclusions from the
user's arm orientation.

To accomplish this step, we were able to adopt our algorithm quite easily into our �nal setup by
simply reading the hand images not from �les but from the Kinect's user image. Instead of the
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Figure 21a Figure 21b Figure 21c

Pixel Size Correct Wrong Correct Wrong Correct Wrong
200 x 154 5 0 5 0 2 0
100 x 77 5 0 5 0 2 0
50 x 38 4 0 2 1 2 0
30 x 23 2 1 1 1 1 1

Table 1: Results of the �rst three test images, where the column "Correct" indicates the amount
of detected �ngertip positions and the column "Wrong" indicates the amount of detected �ngertip
positions which are invalid.

Figure 21d Figure 21e Figure 21f

Pixel Size Correct Wrong Correct Wrong Correct Wrong
200 x 154 3 0 3 0 2 0
100 x 77 2 1 3 0 1 0
50 x 38 1 1 1 1 1 0
30 x 23 0 2 1 2 1 1

Table 2: Results of the last three test images, where the column "Correct" indicates the amount
of detected �ngertip positions and the column "Wrong" indicates the amount of detected �ngertip
positions which are invalid.

given positions for the user's hand and elbow we rely on the coordinates of the body joint positions
of the Kinect's skeletal data.

Unfortunately, within this context the �rst results turned out to be discouraging, as the coordinate
of the hand position tends to jump around the hand position as you can see in Figure 22. Our
initial idea was to detect whether the �ngertip positions are above or beneath the hand position to
check if the �ngers of the outstretched arm are pointing up� or downwards. But since the Kinect
sensor tends to produce imprecise results once the hand is not fully visible (as it is in the side view
of an outstretched arm), we need to implement a workaround to overcome this jitter.

Figure 22: In reality, the hand position delivered by the Kinect's skeleton data tends to jump
around the expected hand position. Here, the calculated hand position (marked as red dot) lies
several pixels beyond the real palm position.

As in most cases these inaccuracies a�ect only one of several �ngertip positions of a hand, we
decided to calculate the average �nger position of all theses coordinates and compare its coordinate
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with the absolute hand position as seen in Listing 7. This procedure turned out to be quite
e�ective with attention to �ltering single �ngertip positions that are lying marginal beneath the
hand's position assumed by the Kinect software.

The second problem we came up with was, that our approximation to the k�value, evaluated in
Chapter 3.2.2, tends to produce erroneous results, because the distortions within the Kinect's
depth image turned out being higher than expected. So in most use cases our algorithm evaluated
�ngertip position's around the user's sleeve, which of course is a highly unwanted behavior we
need to avoid.

We were able to solve this issue by increasing the minimum value for estimating the k�value to
make it more robust against jitter. This turned out being an acceptable solution for our use case
as you can see in Figure 23.

(a) When increasing the limit of the k�value the �n-
gertip can be precisely determined.

(b) Disadvantage of a high k�value: In some use cases
not all �ngertip positions will be identi�ed.

Figure 23: When examining the �nal results we see that in some use cases not all �ngertip positions
(marked with green dots) will be identi�ed, but we are always able to detect the hand's orientation.

The only drawback that remains, is the fact that because of the rather high k�value, we're often
not capable to extract all �ngertip positions which are visually visible (Figure 23b). This limitation
is acceptable, as we sacri�ce this lack of accuracy to a high robustness. Also, we only need to
evaluate the orientation of the user's hand to detect whether the pose is correct or not.

Summing up, in practice k�curvature estimation comes up with some troubles adjusting the right
values for robust detection within di�erent scaling, but we were able to overcome these issues by
carefully adjusting the k�value and testing it against various poses.

4 Conclusion and Answer to the Research Question

We measured a variety of well researched algorithms based upon gesture recognition in general and
hand and �ngertip recognition more speci�cally. We relied on body part recognition based on depth
imaging, because it doesn't require additional training data like HMMs or CONDENSATION. Also
� unlike DTW � it is a viewpoint invariant solution.

For hand gesture and �ngertip recognition we reviewed and evaluated various algorithms. Those
based on convex hull and convexity defect aren't considered for our �nal implementation because
they can't guarantee stable detection within di�erent point of views. The Finger�Earth Mover's
Distance algorithm will most likely deliver the most accurate results, but within the restrictions
of our use case the complexity of gathering own training data is too high for detecting only a
single gesture. Curvature morphology with support vector machines for �ltering correct �ngertip
positions roughly includes the main idea behind our implementation based on k�curvature esti-
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mation. Nevertheless, we discovered that we don't need to �lter between the peaks and valleys of
the detected curve points as we only need information about the orientation of the user's hand.

Our �nal implementation is based upon detecting the angle between the user's hand and elbow
by extracting the skeletal joint positions. For gathering the correct hand orientation we imple-
mented an algorithm based on k�curvatures, which worked well for our use case. One of the
most challenging tasks consisted in �nding right values for the constant k to support view point
invariance.

We set up a test implementation analyzing di�erent gestures, which are stored in black and
white images to test the robustness of our algorithm. Nevertheless, we had to implement several
adjustments for our �nal implementation to overcome the jitter and inaccurate hand positions
delivered by the framework.

Summing up, after some tweaking k�curvatures turned out to be our solution of choice for a stable
detection of an outstretched arm. It doesn't add unwanted complexity by being independent of
acquiring training data and it works within di�erent scales and point of views. This mixture of
robustness and straightforwardness in implementation overcomes the lack of accuracy as it isn't
always able to detect all visible �ngertip positions. Within our requirements, k�curvatures are able
to give us information about the hand's orientation, we can derive from the position of certain
�ngertips, crucial for our hand gesture detection algorithm.
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Listing 3: KinectManager.cpp: measuring the angle between the user's left hand and elbow

209 jointConfidenceHand = kinect ->getSkeletonJointConfidence (0, i,

210 _2RealKinectWrapper :: _2RealJointType :: JOINT_LEFT_HAND );

211 jointConfidenceElbow = kinect ->getSkeletonJointConfidence (0, i,

212 _2RealKinectWrapper :: _2RealJointType :: JOINT_LEFT_ELBOW );

213 if( kinect ->isJointAvailable(

214 _2RealKinectWrapper :: _2RealJointType :: JOINT_LEFT_HAND) &&

215 jointConfidenceHand.positionConfidence > 0.0f &&

216 kinect ->isJointAvailable(

217 _2RealKinectWrapper :: _2RealJointType :: JOINT_LEFT_ELBOW) &&

218 jointConfidenceElbow.positionConfidence > 0.0f)

219 {

220 armVector = ci::Vec2f(

221 skeletonPositions[_2RealKinectWrapper :: _2RealJointType :: JOINT_LEFT_HAND ].x -

222 skeletonPositions[_2RealKinectWrapper :: _2RealJointType :: JOINT_LEFT_ELBOW ].x,

223 skeletonPositions[_2RealKinectWrapper :: _2RealJointType :: JOINT_LEFT_HAND ].y -

224 skeletonPositions[_2RealKinectWrapper :: _2RealJointType :: JOINT_LEFT_ELBOW ].y);

225

226 float angleBetweenHandAndElbow = atan2(armVector.y, armVector.x)

227 * 180 / 3.14159265f - 180;

228

229 if(angleBetweenHandAndElbow < 0)

230 angleBetweenHandAndElbow += 360;

231 else if(angleBetweenHandAndElbow > 360)

232 angleBetweenHandAndElbow -= 360;

233

234 if( angleBetweenHandAndElbow < allowedAngle ||

235 angleBetweenHandAndElbow > 360 - allowedAngle)

236 {

237 temporaryFlowerPosition = ci::Vec2f(

238 skeletonPositions[_2RealKinectWrapper :: _2RealJointType :: JOINT_LEFT_HAND ].x,

239 skeletonPositions[_2RealKinectWrapper :: _2RealJointType :: JOINT_LEFT_HAND ].y)

240 * scaleVector;

241 temporaryFlowerID = i * 2 + 1;

242

243 if(temporaryFlowerID == currentFlowerID)

244 {

245 flowerPosition = temporaryFlowerPosition;

246 flowerID = temporaryFlowerID;

247 return true;

248 }

249 }

250 }
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Listing 4: KinectManager.cpp: retrieving and �ltering the user's hand contour

361 // calculating the estimated size of the hand

362 // retrieving the length of predefined arm and elbow positions

363 float handSize = (handPosition - elbowPosition ). length ();

364 float handROIPosX = ci::math <float >::max(0, handPosition.x - handSize / 2);

365 float handROIPosY = ci::math <float >::max(0, handPosition.y - handSize / 2);

366

367 cv::Rect handROI(handROIPosX , handROIPosY ,

368 ci::math <float >::min(userSurface.getWidth () - handROIPosX , handSize),

369 ci::math <float >::min(userSurface.getHeight () - handROIPosY , handSize ));

370

371 cv::Mat userMat = ci:: toOcvRef(userSurface );

372 cv::Mat handMat = cv::Mat(userMat , handROI );

373 std::vector < std::vector <cv::Point > > contours;

374

375 // "security" functions to ensure that the image is binary ...

376 cv:: cvtColor(handMat , handMat , CV_RGB2GRAY );

377 cv:: threshold(handMat , handMat , 1, 255, CV_THRESH_BINARY );

378

379 cv:: findContours(handMat , contours , CV_RETR_LIST , CV_CHAIN_APPROX_NONE );

380

381 // define a set of minimum contour points that should be taken in account

382 // this resolves possible issues with contours that are in the hand's region

383 // of interest but not part of the hand itself

384 int minContourPoints = handSize / 2;

385 ci::Vec2f fingerTip;

386 std::vector <ci::Vec2f > filteredContourPoints;

387

388 for(int i = 0; i < contours.size (); ++i)

389 {

390 // ignore "small" contours beyond our threshold

391 if(contours[i].size() > minContourPoints)

392 for(int j = 0; j < contours[i].size (); ++j)

393 {

394 ci::Vec2f currentContourPoint =

395 ci::Vec2f(contours[i][j].x, contours[i][j].y);

396

397 // ignore bounding contour points

398 if( currentContourPoint.x > handSize / 10 &&

399 currentContourPoint.y > handSize / 10 &&

400 currentContourPoint.x < handROI.width - handSize / 10 &&

401 currentContourPoint.y < handROI.height - handSize / 10 )

402 filteredContourPoints.push_back(currentContourPoint );

403 }

404 }

Listing 5: KinectManager.cpp: our �nal solution for estimating the k�value

404 int k = ci::math <int >:: max(5, filteredContourPoints.size() / 30);
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Listing 6: KinectManager.cpp: interpreting contour data by calculating the dot product

406 // at current development stage the minimum dot value is zero

407 // when it should have other values , the values should always

408 // be in connection with k as k indicates the lenght of the vectors

409 // from which the dot product is calculated

410 float minDotValue = 0 * k;

411 float minDotProduct = minDotValue;

412 ci::Vec2f currentFingerpoint;

413

414 for(int i = 0; i < filteredContourPoints.size (); ++i)

415 {

416 if(i > k && i + k < filteredContourPoints.size ())

417 {

418 ci::Vec2f leftVector =

419 filteredContourPoints[i] - filteredContourPoints[i - k];

420 ci::Vec2f rightVector =

421 filteredContourPoints[i + k] - filteredContourPoints[i];

422 float currentDot = rightVector.dot(leftVector );

423

424 if(currentDot < minDotProduct)

425 {

426 minDotProduct = currentDot;

427 // add the roi offset to the relative coordinate

428 // to get absolute values

429 currentFingerpoint =

430 ci::Vec2f(handROI.x, handROI.y) + filteredContourPoints[i];

431 }

432 // when "leaving" current fingertip reset dot product

433 else if(currentDot > 0)

434 {

435 // when there has a mindotproduct been set put it into the list

436 if(minDotProduct < minDotValue)

437 fingerPositions.push_back(currentFingerpoint );

438

439 minDotProduct = minDotValue;

440 }

441 }

442 }

Listing 7: KinectManager.cpp: calculating the average �nger position by multiplying through all
retrieved �nger positions

531 ci::Vec2f averageFingerPosition = ci:: Vec2f ::zero ();

532 for(int i = 0; i < fingerPositions.size (); ++i)

533 averageFingerPosition += fingerPositions[i] / fingerPositions.size ();

534

535 return averageFingerPosition.y <= handPosition.y;
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