
Mesh Simpli�cation

BACHELORARBEIT 1

Student Christian Mayr, 0910601022
Betreuer Dr Simon Ginzinger

Salzburg, 23. Jänner 2012

i

Eidesstattliche Erklärung

Ich erkläre hiermit eidesstattlich, dass ich die vorliegende Bachelorarbeit selbständig und ohne
fremde Hilfe verfasst, und keine anderen als die angegeben Quellen und Hilfsmittel benutzt ha-
be. Weiters versichere ich hiermit, dass ich die den benutzten Quellen wörtlich oder inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungskommission weder
im In- noch im Ausland vorgelegt und auch nicht verö�entlicht.

Datum Unterschrift

ii

Kurzfassung

Vor- und Zuname: Christian MAYR
Institution: FH Salzburg
Studiengang: Bachelor MultiMediaTechnology
Titel der Bachelorarbeit: Mesh Simpli�cation
Begutachter: Dr Simon Ginzinger

In Computerspielen müssen dem Detailreichtum von 3D Modellen Grenzen gesetzt werden, um die
Anforderungen an die Hardware im moderaten Rahmen zu halten. Wird dem Benutzer oder der
Benutzerin die Möglichkeit erö�net, selbst erstellte 3D Modelle in das Spiel zu integrieren, muss
die Anzahl der Polygone kontrolliert und eventuell reduziert werden, um ein �üssiges Spielerlebnis
gewährleisten zu können. Vor allem in 3D Online-Spielen ist dieses Verhalten wichtig, weil die 3D
Modelle vom Server heruntergeladen und von Clients mit verschiedensten Hardwarekon�guratio-
nen gerendert werden müssen. Unnötige Komplexität kann hier zu Performanceeinbrüchen und zu
groÿem Datentransfer führen.

Als Lösung bieten sich Algorithmen an, die den Anwendern oder den Anwenderinnen ermöglichen,
ihre 3D Modelle selbstständig bis zu einem gewünschten Detailgrad vereinfachen zu lassen. Diese
Algorithmen verfolgen verschiedene Ansätze und sind ein seit vielen Jahren gut erforschtes Gebiet.

Hier vergleichen wir verschiedene Lösungsansätze um den Geeignetsten für diesen Anwendungsfall
zu identi�zieren. Im Rahmen dieses Vergleiches kamen wir zu dem Schluss, dass sich Algorithmen,
die auf Vertex Pair Contraction basieren, als eine der Geeignetsten für den vorhin genannten
Anwendungsfall erweisen. Diese Arbeit wird diese Entscheidung begründen, indem sie relevante
Algorithmen theoretisch und praktisch miteinander vergleicht und deren Vor- und Nachteile in
Bezug auf den de�nierten Anwendungsfall abwägt.

Schlagwörter: Mesh Simpli�cation Algorithms, Vertex Decimation, Edge Collapse, Vertex Pair
Contraction, Vertex Clustering, Metro, Mesh Simpli�cation Viewer

iii

Abstract

3D models, which are used in computer games, need to be restricted within their level of detail to
keep the hardware specs at a moderate level. If the user can upload models to be used within the
game engine it is necessary to control and possibly reduce the number of polygons for providing
a gaming experience at playable frame rates. Particularly within the context of 3D online games
such behavior is important, because various clients need to render and download these meshes
from the game's server. Too much complexity may lead to weak performance and increased data
transfer.

Algorithms, which provide the possibility to autonomously reduce 3D models to an adjustable
degree of detail, are a desirable solution. These mesh simpli�cation algorithms pursue di�erent
approaches and have been a well researched topic for the last decades.

We compare di�erent solutions to �nd the most suitable for our use case. Within this comparison
we come to the conclusion that algorithms based on vertex pair contraction are one of the most
suitable mesh simpli�cation algorithms for the use case described in the last paragraphs. This
thesis will justify this result by comparing relevant algorithms both theoretically and practically
and measuring their strengths and weaknesses in context to the prede�ned use case.

Keywords: Mesh Simpli�cation Algorithms, Vertex Decimation, Edge Collapse, Vertex Pair

Contraction, Vertex Clustering, Metro, Mesh Simpli�cation Viewer

CONTENTS iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Requirements for the Use Case . 1

1.3 Research Question and Scienti�c Methods . 2

2 Mesh Simpli�cation Algorithms 3

2.1 Vertex Decimation . 3

2.2 Edge Collapse and Vertex Pair Contraction . 5

2.3 Vertex Clustering . 7

2.4 Recent Approaches . 8

2.4.1 Mesh Simpli�cation using the GPU . 9

2.4.2 Quadrilateral Mesh Simpli�cation . 9

2.4.3 Out�of�Core Simpli�cation . 9

3 Comparison 9

3.1 Measuring Error in Simpli�ed Surfaces . 10

3.2 Mesh Simpli�cation Viewer . 11

3.3 Implemented Extensions . 12

3.4 Practical Results . 14

3.4.1 Measuring Low�Poly Meshes . 14

3.4.2 Measuring High�Poly Meshes . 16

4 Conclusion and Answer to the Research Question 17

CONTENTS v

List of Abbreviations

GPU Graphics Processing Unit
PLY Polygon File Format
RAM Random Access Memory
SIGGRAPH Special Interest Group on Graphics and Interactive Techniques

1 INTRODUCTION 1

1 Introduction

1.1 Motivation

Reducing the number of polygons in a model is useful to improve storage, transmission, computa-
tion and display (Heckbert and Garland 1997, 1). Within the scope of a virtual world architecture
this feature is crucial for improving performance.

In online communities like Twinity1 or Second Life2 everybody can express himself by altering
his avatar and creating user generated content, which causes lot of incalculable momentum. The
possibility to upload self created 3D models leads to a major problem: In Twinity there is currently
no optimization for the amount of triangles used within these meshes, which may lead to overly
complex models placed in user generated areas (cf. Metaversum GmbH 2011). The complexity of
these models will be de�ned as the number of vertices, edges and faces within a single mesh.

Therefore the users in online gaming should be able to enable mesh simpli�cation on their models
before uploading to avoid the following scenarios (Ferreira 2011, 7):

• Overly complex content may lead to poor performance on some clients with limited compu-
tational resources.

• Very detailed meshes require more bandwidth when they are being downloaded on the �y.
Users with limited bandwidth may be handicapped when the mesh data can't be downloaded
fast enough for an acceptable user experience.

Algorithms handling mesh simpli�cation have been a well researched topic over the last decades.
Since Schroeder, Zarge and Lorensen presented a vertex decimation algorithm at SIGGRAPH `92
(Schroeder, Zarge, and Lorensen 1992) a lot of research to this area has been proposed. Gener-
ally they vary widely in approach, e�ciency, quality and generality. Also many algorithms are
restricted to or only perform well on manifold3 surfaces (Talton 2004).

Research on these major algorithms needs to be taken to �nd suitable candidates. To achieve best
possible results, a comparison in certain terms relevant for the portrayed use case is essential.

1.2 Requirements for the Use Case

The mesh simpli�cation must not occur in real time, but needs a wide support for di�erent mesh
types while delivering good approximation to the original mesh. The less restrictions included
within an algorithm the better it will be quali�ed for the use case. Preserving the original topology
of the mesh is not required and also not desired since it introduces additional constraints in the
reduction process (Franc 2002, 5).

In the end, following points, which will be explained in the next paragraphs, must be taken in
account:

• The algorithm must be e�cient,

• the algorithm must be automatic and

• the algorithm must be general (Ferreira 2011, 8).

1. http://www.twinity.com
2. http://secondlife.com
3. Manifold surfaces will be further de�ned in chapter 1.2.

1 INTRODUCTION 2

E�ciency is the tradeo� between speed and a good optical result. A good optical result is de�ned
as a reduced mesh with a tolerable loss in quality where the most important mesh details appear
to be unaltered in the game. It is also important that the algorithm doesn't invest too much time
for simpli�cation since it will be executed every time users upload custom meshes to the system.

Automatism means here that the algorithm must not require much parameters or options for
con�guration to work properly. Thus the algorithm should also be useable for novice users without
any special knowledge and also improve usability in continuous exertion. A desirable result is the
need of only one parameter controlling the compression rate.

Generality de�nes that the algorithm should work on a wide variety of mesh structures. This is
a very important point, since the algorithm will be confronted with user generated content. For
instance it can't be guaranteed that the mesh is manifold or non�intersecting4.

Garland de�nes a polygonal surface as manifold "if every edge has exactly two incident faces
(expect edges on the boundary which must have exactly one), and the neighborhood of every
vertex consits of a closed loop of faces (or a single fan of faces on the boundary)" (Garland 1999b,
9). Check out �gure 1 for a few examples of manifold and non-manifold faces.

Figure 1: Manifold and non�manifold neighborhoods of a given vertex (in black) (Garland 1999b,
9).

The algorithm shouldn't have to assume manifold or non�intersecting setups, because it should
work �exible on di�erent mesh topologies.

1.3 Research Question and Scienti�c Methods

Because of the vast amount of research and solutions for mesh simpli�cation we concentrate only
on well�proven approaches that �t the mentioned requirements best. Fitting candidates are vertex
decimation, iterative edge collapse, vertex pair contraction and vertex clustering. Strengths and
weaknesses of each technique will be elaborated and the remaining candidates will be compared
in a practical implementation with various setups in mesh type and compression rate to gather
reproducible and comparable values. Additionally the latest scienti�c approaches in this �eld will
be considered for an alternative solution.

In my research I came to the conclusion that vertex pair contraction using quadric error metrics
introduced by Garland and Heckbert (Garland and Heckbert 1997) provides an excellent solution
for my problem. This thesis con�rms why quadric error metrics are my instrument of choice by
answering the following research question:

Why is vertex pair contraction using quadric error metrics one of the most suitable

mesh simpli�cation algorithms for automatic compression of user generated meshes?

4. When a face is folded over another face of the same mesh, the mesh is intersecting.

2 MESH SIMPLIFICATION ALGORITHMS 3

2 Mesh Simpli�cation Algorithms

Simpli�cation is nowadays a �x practice within the �eld computer graphics. For instance the
quantization of color to 24 bit or the clamping of precisions of coordinates or normals within a
mesh are useful and long�used approximations, but are indeed simpli�cations (Luebke et al. 2002,
8). To avoid misunderstanding simpli�cation in this paper aims only on reduction of polygonal
meshes regarding their complexity.

Proposals of some procedures focusing on mesh simpli�cation have been published much more
than 20 years ago (Franc 2002).

Mesh simpli�cation strategies can be grouped into two categories: Local and global strategies.
Local strategies are by far the most common and Talton de�nes them as following:

"Typically, they de�ne some mesh operation S that, when applied to a mesh M, acts on
a small collection of its elements and produces a new mesh M with fewer elements. By
repeated application of S, a mesh may be simpli�ed arbitrarily. In order to determine
the mesh elements to which S should be applied on a given iteration, S may be asso-
ciated with an error function (or cost function) that measures the amount of error the
operation will introduce into the approximation. By computing the error associated
with every possible application of S at a particular iteration, the algorithm can apply
the one with minimal cost. This type of heuristic is quite reasonable for simpli�cation
problems, and in practice these methods work well." (Talton 2004)

All algorithms introduced in this chapter except for vertex clustering are following this approach
and are part of the group of local strategies. The essential di�erence between these local algorithms
is to choose which edge to collapse and how to collapse (Yuan 1999).

Global strategies, on the other hand, are applied to the input mesh as whole (Talton 2004).

Other common methodologies are re�nement and decimation. Garland de�nes them as following:

"A re�nement algorithm is an iterative algorithm which begins with an initial coarse
approximation and adds elements at each step. Essentially the opposite of re�nement, a
decimation algorithm begins with the original surface and iteratively removes elements
at each step. Both re�nement and decimation share a very important characteristic:
they seek to derive an approximation through a transformation of some initial surface."
(Garland 1999a, 5)

For our use case we only focus on decimation. A reconstruction of the original mesh is not desirable.

2.1 Vertex Decimation

Vertex Decimation was �rstly introduced by Schroeder, Zarge and Lorensen at SIGGRAPH '92.
They de�ne its basic work as following:

"Multiple passes are made over all vertices in the mesh. During a pass, each vertex is
a candidate for removal and, if it meets the speci�ed decimation criteria, the vertex
and all triangles that use the vertex are deleted. The resulting hole in the mesh is
patched by forming a local triangulation. The vertex removal process repeats, with
possible adjustment of the decimation criteria, until some termination condition is
met." (Schroeder, Zarge, and Lorensen 1992)

2 MESH SIMPLIFICATION ALGORITHMS 4

The termination condition in our use case is the compression rate, which de�nes the allowed
number of remaining vertices in the resulting mesh.

In the beginning the algorithm must decide whether a vertex is a candidate for deletion or not.
Therefore all vertices must be classi�ed within �ve groups that de�ne whether a vertex can be
removed and how it's best performed. These groups are divided into simple, complex, boundary,
interior edge and corner vertices and will be explained in the next paragraphs.

When a vertex is surrounded by a complete cycle of triangles and each edge using it is exactly
part of two triangles then the vertex is simple. They are deleted by using the distance to plane
criterion. If the vertex is within a speci�ed distance to the average plane (�gure 2a) it may be
deleted (Schroeder, Zarge, and Lorensen 1992).

(a) Average Plane (b) Boundary

Figure 2: Average plane and boundary, which assist on deciding whether a vertex is deleted or not
(Schroeder, Zarge, and Lorensen 1992)

Schroeder, Zarge and Lorensen describe a further classi�cation of simple vertices as edge or corner
vertices:

"If the dihedral angle between two adjacent triangles is greater than a speci�ed feature
angle, then a feature edge exists. When a vertex is used by two feature edges, the
vertex is an interior edge vertex. If one or three or more feature edges use the vertex,
the vertex is classi�ed a corner vertex." (Schroeder, Zarge, and Lorensen 1992)

Another type is a vertex on the boundary of a mesh (�gure 2b), for instance within a semi�cycle of
triangles, and is called boundary mesh. Both interior and boundary vertices are deleted by using
the distance edge criterion. If the distance to the line de�ned by the two boundary or feature
edges is less than a prede�ned value, it can be deleted (Schroeder, Zarge, and Lorensen 1992).

On the other hand, non�manifold vertices are de�ned as complex vertices and are no candidates
for deletion (Schroeder, Zarge, and Lorensen 1992).

Figure 3: Vertex decimation distinguishes between these �ve groups of vertices (Schroeder, Zarge,
and Lorensen 1992)

After vertex deletion the resulting hole must be retriangulated. Schroeder, Zarge and Lorensen
choose a recursive loop splitting procedure:

"Each loop to be triangulated is divided into two halves. The division is along a line
(i.e., the split line) de�ned from two non�neighboring vertices in the loop. Each new

2 MESH SIMPLIFICATION ALGORITHMS 5

loop is divided again, until only three vertices remain in each loop. A loop of three
vertices forms a triangle, that may be added to the mesh, and terminates the recursion
process." (Schroeder, Zarge, and Lorensen 1992)

They evaluate the loop split by using a split plane. When every point in a candidate loop is on
one side the vertex is free for removal (Schroeder, Zarge, and Lorensen 1992).

Talton observes that vertex decimation algorithms "excel at eliminating extraneous geometry"
(Talton 2004). Garland and Heckbert remark the "reasonable e�ciency and quality" of vertex
decimation (Garland and Heckbert 1997). Vertex decimation has also been improved over the
years by the development of several more sophisticated algorithms, like for instance hierarchical
triangulation developed by Soucy and Laurendau (Soucy and Laurendeau 1996). Garland remarks
that the better results created by such algorithms lead to worse performance and more space
consumption (Garland 1999a, 8).

The preservation of the original topology will be rated as a big �aw for our use case de�ned in
chapter 1.2. Schroeder mentions that preserving the original topology is "a strong limiting factor
in overall reduction capability, since objects with a large number of holes or other topological
constraints cannot be e�ectively reduced" (Schroeder 1997). Also vertex decimation can't handle
non-manifold surfaces. This is also a �aw, because allowing manifold surfaces allows the simpli�-
cation algorithm to select the better choice on geometric �delity since it is not limited (Garland
1999b, 9).

Summing up, e�ciency and automatism is provided by vertex decimation and makes it a suitable
candidate for our use case. On the other hand, the limitations caused by the preservation of the
original topology and the restriction to manifold surfaces can't guarantee full support for all types
of mesh structures and doesn't ful�ll all requirements de�ned in generality in chapter 1.2.

2.2 Edge Collapse and Vertex Pair Contraction

Garland and Zhou remark that many of the most e�ective simpli�cation algorithms are based on
iterative edge contraction (Garland and Zhou 2005, 2). The edge collapse operator has �rstly been
introduced by Hoppe at SIGGRAPH '93 (Hoppe et al. 1993).

The edge collapse operator removes an edge, which will be replaced by a new vertex vnew. The
new vertex can be one of the edge's end points (half�edge collapse, �gure 4a) or a newly computed
vertex (full�edge collapse, �gure 4b) (Luebke et al. 2002, 21).

Edge contraction can close holes, but not join unconnected regions. Vertex pair contraction, which
is a generalization of edge collapse (Garland and Heckbert 1997; Lindstrom and Turk 2000, 3),
supports this type of aggregation. An algorithm based on vertex pair contraction has the bene�t,
that it is less sensitive to the mesh connectivity of the original model (Garland and Heckbert 1997).
This might change the overall mesh topology, but for our use case and for instance in applications
with focus on rendering the prevention of the original topology is less important than preservation
of the overall shape.

Stan Melax developed a fairly good working algorithm based on edge contraction, which has been
used in BioWare's Omen 3D engine (Melax 1998). This algorithm will be practically evaluated
in chapter 3.4 of this thesis, but not fully explained at this place, since the main work�ow is
analogous to vertex pair contraction.

Brie�y, Melax evaluates the cost of collapsing an edge by the length of the edge multiplied by a
curvature term. He explains this term as following:

"The curvature term for collapsing an edge uv is determined by comparing dot products
of face normals in order to �nd the triangle adjacent to u that faces furthest away from
the other triangles that are along uv." (Melax 1998)

2 MESH SIMPLIFICATION ALGORITHMS 6

(a) Half�edge Collapse

(b) Edge Collapse

Figure 4: Half�edge collapse: the resulting vertex is newly computed. Edge collapse: the new
vertex is one of the edge's end points. (Luebke et al. 2002, 21�22)

The edges with the minimum cost will be selected for removal.

In vertex pair contraction two unconnected vertices va and vb are collapsed (Luebke et al. 2002,
23). Luebke et al. de�ne the basic course of actions as following:

"Since these vertices do not share an edge, no triangles are removed by a vertex�
pair collapse, but the triangles surrounding va and vb are updated as if an imaginary
edge connecting va and vb underwent an edge collapse. For this reason, the vertex�
pair collapse operator has also been referred to as a virtual�edge collapse. Collapsing
unconnected vertices enables connection of unconnected components as well as closing
of holes and tunnels." (Luebke et al. 2002, 23)

A well developed and proven algorithm based on vertex pair contraction is surface simpli�cation
using quadric error metrics by Garland and Heckbert. They are supporting non�manifold surfaces,
since the possibility of the creation of non�manifold regions after joining two separate regions is
pretty high and the e�ort in avoiding the creation of non�manifold regions without limiting the
possibilities not worthwhile (Garland and Heckbert 1997).

First of all the algorithm needs to consider the vertices for removal. The selection of all vertices
leads to bad performance (Luebke et al. 2002, 23), so Garland and Heckbert select a set of valid
vertex pairs at initialization time by the de�nition of following parameters:

"We will say that a pair (v1, v2) is a valid pair for contraction if either: (v1, v2) is
an edge, or |v1 − v2| < t, where t is a threshold parameter." (Garland and Heckbert
1997)

The threshold parameter must be carefully set, since too high values will again lead to bad perfor-
mance and connect widely separated portions of the model. When the threshold parameter is set

2 MESH SIMPLIFICATION ALGORITHMS 7

to zero, the algorithm will behave as a simple edge contraction algorithm (Garland and Heckbert
1997).

Then for each vertex pair their quadric error is evaluated and they are sorted by these errors,
which are equivalent to the cost of a contraction, in a priority queue (Luebke et al. 2002, 133).

Quadric error metrics try to avoid the �aws that come with other metrics for error measurement
(Garland 1999b, 42):

• Metrics based on distance measurements produce good results, but are expensive to evaluate.

• Metrics based on local approximations don't work with non�manifold surfaces.

• Simple measurements, like dihedral edge angles explained in chapter 2.1, do not provide
enough information to come up with good results.

A vertex coordinate v and a quadric Q, which is a 4 x 4 symmetric matrix capturing information
about a set of planes, will give the sum of the squared distances from the vertex to each plane by
solving (vTQv). The quadrics at each vertex of the original model are initialized to represent the
planes of all triangles that meet at that vertex. When two vertices are merged, their quatric of
the new vertex is simply the sum of the two old metrices (Luebke et al. 2002, 133-134). The whole
mathematical procedure is elucidated in Garland's and Heckbert's paper about error metrics.
They summarize the main algorithm as following:

1. Compute the Q matrices for all the initial vertices.

2. Select all valid pairs.

3. Compute the optimal contraction target #–v for each valid pair (v1, v2). The error
v−T(Q1 +Q2)

#–v of this target vertex becomes the cost of contracting that pair.

4. Place all the pairs in a heap keyed on cost with the minimum cost pair at the top.

5. Iteratively remove the pair (v1, v2) of least cost from the heap, contract this pair,
and update the costs of all valid pairs involving v1.

(Garland and Heckbert 1997)

Garland and Heckbert note that their algorithm "provides a mix of e�ciency, quality, and gen-
erality not found in earlier algorithms" (Garland and Heckbert 1997). Since the requirements for
our use case in chapter 1.2 aim exactly in that direction this algorithm is a promising candidate
for evaluation.

But there are also a clear weaknesses in simpli�cation stated, relying on the information gathered
in the quatrics, where the detection of defunct faces after accumulation might not lead to perfect
results (Garland 1999b).

As conclusion mesh simpli�cation using quadric error metrics is not the most accurate and not
the fastest algorithm for mesh simpli�cation but the �aws of the others may lead to much more
serious con�icts in the given use case. This hypothesis will be proven in the practical comparison
in chapter 3.4.

2.3 Vertex Clustering

Vertex clustering is the only global simpli�cation strategy that will be explained and evaluated in
more detail. Talton observes that "global strategies are far from prevalent in the simpli�cation
literature" (Talton 2004). Reasons for that will be evaluated in the following paragraphs.

Vertex clustering has �rstly been proposed by Rossignac and Borrel in 1992 (Rossignac and Borrel
1992). It works as following: At �rst, weight or importance to every vertex in the model is assigned.

2 MESH SIMPLIFICATION ALGORITHMS 8

Next, a 3D grid is overlaid and all vertices within a cell are collapsed to the single most important
one. All triangles that became degenerate within this process are �ltered out and deleted (Luebke
et al. 2002, 122).

Garland observes that vertex clustering methods are very fast and work well on di�erent types
of meshes (Garland 1999a, 7). Even when speed is not the most important point when uploading
and simplifying user generated meshes, the support for a wide diverseness in topology of di�erent
meshes is a big plus. But when analyzing the quality of the simpli�ed meshes, big �aws are
exposed: The process itself is hard to control and the results are not always desirable (Xin et al.
2011).

For better illustration Garland and Heckbert compared algorithms using vertex clustering with
those based on edge collapse and vertex pair contraction by simplifying a detailed model of a
human food. They come to the conclusion that vertex clustering provides the visually worst
result (Garland and Heckbert 1997) as you can see in �gure 5c. Allocated to our use case vertex
clustering can't guarantee a good enough quality for a wide variety of di�erent meshes. So lots
of detail might get lost by the wrong size of the surrounding grid. Additionally vertex clustering
doesn't provide enough possibilities to detect areas with retainable detail. So these areas might
easily get lost in the simpli�cation process which won't produce desirable results. Also Garland
notes that "clustering methods tend to work well if the original model is highly over�sampled
and the required degree of simpli�cation is not too great" (Garland 1999a, 7). This observation is
not compatible to user generated content, because highly over�sampled models will require a high
degree of simpli�cation to improve frame rates.

(a) Original (b) Simpli�ed Using Vertex Pair Contraction

(c) Simpli�ed Using Vertex Clustering

Figure 5: Simplifying a human food using vertex pair contraction and vertex clustering, where
vertex clustering provides the visually worst result (Garland and Heckbert 1997).

Because of these reasons vertex clustering won't be taken in account in the practical comparison
at chapter 3.4.

2.4 Recent Approaches

This chapter will deliver an overview over techniques focusing on mesh simpli�cation, which have
been established over the last years. They all won't be chosen for the �nal comparison in chapter
3.4 because of reasons, that will be stated for each technique.

3 COMPARISON 9

2.4.1 Mesh Simpli�cation using the GPU

DeCoro and Tatarchuk established a technique that adopts vertex clustering to the GPU. With
the introduction of the geometry shader to the GPU pipeline real time mesh simpli�cation is
amenable to the GPU. The research is based upon performing the vertex pair collapse operation
simultaneously to each vertex in a cluster. For that DeCoro and Tatarchuk described a GPU�
friendly data structure called the "probalistic octree" (DeCoro and Tatarchuk 2007).

One of the main improvements is the dramatic increase in speed compared with implementations
on the CPU. In their test cases the GPU completes the simpli�cation task at least 15 times faster
than on the CPU (DeCoro and Tatarchuk 2007).

Executing mesh simpli�cation algorithms on the GPU opens up new possibilities for real time
simpli�cation. The users, who upload user generated content, might bene�t of fast generated
previews of meshes in di�erent simpli�cation stages. But this technique assumes a setup that can't
be guaranteed in our use case. Without geometry shaders the GPU can't handle the simpli�cation
operation. But for future approaches mesh simpli�cation on the GPU will most likely become
interesting for general usage.

2.4.2 Quadrilateral Mesh Simpli�cation

Most simpli�cation algorithms are based on meshes with triangular surfaces, but the interest in
developing algorithms that operate on quad meshes has been growing over the last years (Daniels
et al. 2008). Lai, Kobbelt and Hu remark that quad dominant meshes describe the structure of a
mesh in a more natural way than their equivalent with triangular surfaces (Lai, Kobbelt, and Hu
2008).

Since the research in this area is rather new and not so well studied this thesis won't focus on this
type of simpli�cation. Also Daniels et al. mention that the structure of quadrilateral elements
forces constraints on mesh connectivity (Daniels et al. 2008). In addition it must be considered that
a triangular mesh must be converted into a quad mesh before any simpli�cation can be executed.
Because of these �aws quadrilateral mesh simpli�cation is currently not suitable for our use case.

2.4.3 Out�of�Core Simpli�cation

Lindstrom observes that with improvements in processor speed and memory capacity it is possible
to create datasets in a size, which is no longer adoptable to early designed simpli�cation algorithms.
With this huge amount of data these algorithms require a lot of internal storage for computation,
which leads to insu�cient simpli�cation speed. Because of that Lindstrom developed an out�of�
core simpli�cation algorithm based on uniform sampling via vertex clustering capable of simplifying
very large models (Lindstrom 2000).

It is highly unlikely that such huge meshes need processing in our use case. Meshes, which are
created for games don't follow the requirements for out�of-core�visualization, which copes with
models, that are too large to �t into main memory (Lindstrom 2000). Therefore out�of�core
simpli�cation algorithms are not designed for our use case and won't be considered.

3 Comparison

After the theoretical comparison of various simpli�cation techniques we come to the conclusion
that algorithms based on edge collapse and vertex pair contraction, which have been evaluated
in chapter 2.2, �t the requirements for e�ciency, automatism and generality best. Based on
the theoretical evaluation in chapter 2 and also on Ferreira's paper about mesh simpli�cation in a

3 COMPARISON 10

virtual world (Ferreira 2011, 9) algorithms based on Garland's and Heckbert's surface simpli�cation
using quadric error metrics (Garland and Heckbert 1997) should perform best.

For verifying these results a practical setup, which compares algorithms based on edge collapse
and vertex pair contraction, is required. It should be able to simplify a wide variety of meshes
within di�erent compression rates and compare their similarity to the uncompressed meshes.

Je�rey Somers implemented four di�erent algorithms, which are based on surface simpli�cation
using error metrics and edge collapse (Somers 2002). We extended the functionality of his program
to create the required setup.

3.1 Measuring Error in Simpli�ed Surfaces

For measuring the similarity between the simpli�ed and original meshes the small program Metro5

will be used, because of the following reasons:

• Metro is a general tool, which allows the user the comparison of di�erent simpli�cation
approaches on meshes to decide, which simpli�cation method �ts best to the target mesh
(Cignoni, Rocchini, and Scopigno 1998).

• Metro is simple to use and requires no knowledge on the simpli�cation approach adopted to
build the reduced mesh (Cignoni, Rocchini, and Scopigno 1998).

• Metro's comparison technique is well proven and established since it has been integrated
into MeshLab6, which is "an open source, portable, and extensible system for the processing
and editing of unstructured 3D triangular meshes" (Visual Computing Laboratory 2011).

• Metro natively supports the �le format of the simpli�ed meshes, which are in usage at our
setup and exported into PLY format. The PLY format will be shortly explained in chapter
3.2.

M.E.S.H.7 provides similar functionality, but there is no big di�erence besides a faster execution
time (cf. Aspert, Santa-Cruz, and Ebrahimi 2002). The decision for Metro has been made because
it can easily be executed via the command line and is better adjustable for generating various
comparisons within a batch process.

Metro numerically compares two triangle meshes and evaluates their di�erences on the basis of
the approximation error. The approximation error is calculated by taking a bunch of points on
mesh A and compare them with the closest point on mesh B (Cignoni, Rocchini, and Scopigno
1998). But before being able to calculate this value the points must be sampled.

Metro supports three di�erent sampling methods:

• Montecarlo sampling, which picks random samples in the interior of each face,

• subdivision sampling, which subdivides each face along the longest edge and chooses the
sample in the center of each cell and

• similar triangles sampling, which subdivides each face in polygons similar to the face and
sample it with the vertices of these polygons (Cignoni, Rocchini, and Scopigno 1998).

5. using version 0.4.07 from http://sourceforge.net/projects/vcg/files

6. http://meshlab.sourceforge.net
7. http://mesh.berlios.de

3 COMPARISON 11

The value measuring similarity will be calculated via the Hausdor� distance. Guthe, Bordin and
Klein de�ne the Hausdor� distance "as the maximum of the distances of all points on both meshes
to the other mesh" (Guthe, Borodin, and Klein 2005). In more detail, it calculates the maximum
value of minimum distances of each point to the surface of the other mesh.

As a result Metro computes an error measured as an approximation of the surface-to-surface
distance, which is evaluated by computing a point-to-surface distance for each sampled point.
This value is a numerical evaluation of surface meshes "likeness" (Cignoni, Rocchini, and Scopigno
1998).

To be more precise Metro calculates the minimum normal distance of the points to the surface to
evaluate the adjacent plane. With the points on the plane it evaluates the maximum distance to
the planes on the other model to get the maximum error. This measurements are taken from the
simpli�ed to the normal mesh and vice versa and the maximum error value is selected.

The lower this calculated error value between a simpli�ed and an uncompressed mesh, the better
the optical quality of the simpli�ed mesh.

3.2 Mesh Simpli�cation Viewer

Je�rey Somers implemented four di�erent mesh simpli�cation algorithms, where the user can
remove triangles from the mesh and the results are displayed in real time. The program with the
name Mesh Simpli�cation Viewer and its source code can both be downloaded at Somers project
page (cf. Somers 2002).

All the models used for comparison are imported in the PLY polygon �le format8 based on ASCII
presentation to make the content of the �le readable in text editors. It is a simple and �exible
�le format, which is very popular in the academic and research world. A ply �le begins with a
header and then displays the indices of the mesh's vertices in 32 bit integers. Then the faces are
described by the prede�ned indices of the vertices (McHenry and Bajcsy 2008, 14).

Garland and Heckbert's simpli�cation algorithm using quadric error metrics is implemented in
two versions: "a version weighted by the area of the triangles in the mesh and a version where
the triangle areas are not taken into account" (Somers 2002). Somers remarks the following di�er-
ences between his implementation and the algorithm described in Garland and Heckbert's paper
(Garland and Heckbert 1997):

"Only existing edges are collapsed in this program. Also, no steps are taken to prevent
mesh inversion after an edge collapse, which may result in the mesh folding over itself
after a collapse." (Somers 2002)

This shouldn't lead to much di�erence in the results, since Metro computes the values based on
distances and not on face directions as pointed out in chapter 3.1.

Somers also implemented Stan Melax's polygon reduction algorithm, which has been described in
chapter 2.2. So the setup is ideal for a practical comparison of algorithms based on vertex pair
contraction and edge contraction.

Additionally Somers implemented an algorithm he calls "shortest edge �rst", which he describes
as following:

"The shortest edges within the mesh are the �rst ones to be removed. This is not a
particularly good algorithm. It's just here for comparison's sake." (Somers 2002)

This algorithm will also be compared with the other ones, but only because of the reason that it
has already been implemented. There are no expectations that this algorithm will achieve better
results than the other ones.

8. Check out http://paulbourke.net/dataformats/ply for a further de�nition of the PLY format

3 COMPARISON 12

3.3 Implemented Extensions

Somers only allows the reduction of the imported mesh in a single prede�ned simpli�cation step
of �ve percent. Although it is possible to reduce the mesh multiple times by this �xed percentage
a reduction rate that can be freely de�ned is essential to receive useable results. The performance
of the implemented algorithms should be testable in relation to di�erent simpli�cation rates of the
target mesh. Somers already de�ned a variable, which can be set in the code, but his attempt is
a little erroneous.

The percentage of simpli�cation is represented by the variable NUM_PAGEUPDN_INTERVALS, which
was originally an integer�variable. Unfortunately this led to no simpli�cation and wrong values on
higher reduction rates, because NUM_PAGEUPDN_INTERVALS had always the same value on reduction
rates beyond 50 %. This has been easily �xed by turning NUM_PAGEUPDN_INTERVALS to a �oat-
variable.

Listing 1: main.cpp: setting up a reduction rate of 90 %

183 const int REDUCE_TRI_PERCENT = 90;

184 const float NUM_PAGEUPDN_INTERVALS = 100.0f / REDUCE_TRI_PERCENT;

To be able to compare the execution time of the algorithms measurements of the execution time
have been added by retrieving the clock time before and after the simpli�cation. After successful
simpli�cation this time will be displayed in the title window of the application.

Also the mesh class has been enhanced by the function writePLY() to save the simpli�ed data to
disk and be able to compare their similarities with Metro. Since the vertices in the data structure
are not deleted and only set to inactive due to support for undoing simpli�cation steps, all active
vertices are collected, sorted and their positions are written to the �le. In the end, the vertex
indices for the faces are also collected and written to the �le.

Listing 2: mesh.cpp: the writePLY() function

361 void Mesh:: writePLY ()

362 {

363 ofstream plyFile("reduced.ply");

364 plyFile << "ply" << std::endl;

365 plyFile << "format ascii 1.0" << std::endl;

366

367 std::vector <int > vertexIndizes;

368

369 int faceCount = 0;

370 for(int i = 0; i < _plist.size (); ++i)

371 if(_plist[i]. isActive ())

372 {

373 vertexIndizes.push_back(_plist[i]. getVert1Index ());

374 vertexIndizes.push_back(_plist[i]. getVert2Index ());

375 vertexIndizes.push_back(_plist[i]. getVert3Index ());

376 faceCount ++;

377 }

378

379 std::sort(vertexIndizes.begin(), vertexIndizes.end ());

380 // delete dual entries

381 vertexIndizes.erase(

382 std:: unique(vertexIndizes.begin(), vertexIndizes.end()),

383 vertexIndizes.end ());

384

385 // write the header

3 COMPARISON 13

386 plyFile << "element vertex " << vertexIndizes.size() << std::endl;

387 plyFile << "property float32 x" << std::endl;

388 plyFile << "property float32 y" << std::endl;

389 plyFile << "property float32 z" << std::endl;

390

391 plyFile << "element face " << faceCount << std::endl;

392 plyFile << "property list uint8 int32 vertex_indices" << std::endl;

393 plyFile << "end_header" << std::endl;

394

395 for(int i = 0; i < vertexIndizes.size (); ++i)

396 {

397 Vec3 pos = _vlist[vertexIndizes[i]]. getXYZ ();

398 plyFile << pos.x << " " << pos.y << " " << pos.z << std::endl;

399 }

400

401 for(int i = 0; i < _plist.size (); ++i)

402 if(_plist[i]. isActive ())

403 {

404 int newIndex1 = -1;

405 int newIndex2 = -1;

406 int newIndex3 = -1;

407

408 for(int j = 0; j < vertexIndizes.size (); ++j)

409 {

410 if(vertexIndizes[j] == _plist[i]. getVert1Index ())

411 newIndex1 = j;

412 else if(vertexIndizes[j] == _plist[i]. getVert2Index ())

413 newIndex2 = j;

414 else if(vertexIndizes[j] == _plist[i]. getVert3Index ())

415 newIndex3 = j;

416

417 if(newIndex1 != -1 && newIndex2 != -1 && newIndex3 != -1)

418 break;

419 }

420

421 plyFile << "3 " << newIndex1 << " "

422 << newIndex2 << " " << newIndex3 << std::endl;

423 }

424

425 plyFile.close ();

426 }

The �nal course of events during simpli�cation looks like following:

Listing 3: main.cpp: simpli�cation process including all enhancements

242 if (g_pProgMesh)

243 {

244 int size = g_pProgMesh ->numEdgeCollapses () / NUM_PAGEUPDN_INTERVALS;

245 if (size == 0) size = 1;

246 bool ret = true;

247 double start = omp_get_wtime ();

248 for (int i = 0; ret && i < size; ++i) {

249 ret = g_pProgMesh ->collapseEdge ();

250 }

3 COMPARISON 14

251 if (!ret) MessageBeep (0);

252 double end = omp_get_wtime ();

253 g_pWindow ->displayWindowTitle(end - start);

254 InvalidateRect(g_pWindow ->getHWnd(), NULL , TRUE);

255 g_pProgMesh ->writePLY ();

256 }

257 return 0;

3.4 Practical Results

All simpli�cations are computed using Je�rey Somer's Mesh Simpli�cation Viewer with our ex-
tensions compiled as release version in Visual Studio 2008 Professional. The used hardware envi-
ronment is based on an Intel Core 2 Duo P8700 @ 2.53 GHz using 4 Gigabytes of RAM.

For receiving representative results models with di�erent complexity are imported. All imple-
mented algorithms are measured in execution time and similarity between compromised and orig-
inal mesh. Di�erent simpli�cation degrees are executed on all models. Around 30 %, 60 % and
90 % of the original edges are removed. For an optical comparison the original and simpli�ed mod-
els will be imported into MeshLab9, where snapshots of the original and all simpli�ed versions are
exported.

Di�erent models stored in PLY format are used from di�erent sources, which will be parted in
low� and high�poly meshes. Both the execution time and the Hausdor� distance computed by
Metro are measured. Metro's default settings with similar triangles sampling will be used.

Also the amount of vertices and faces of the simpli�ed model is documented. This is suitable
to draw conclusions to the reduction of �le size and saving of storage space. But since we don't
expect magni�cent di�erences between the algorithms these numbers are only documented for the
sake of completeness.

3.4.1 Measuring Low�Poly Meshes

In Somers's source code are a few models included, from which the cow� and the Porsche�model
(�gure 6) are used for illustrating the performance on a relatively low number of vertices and faces.

(a) Cow (2903 vertices and 5804 faces) (b) Porsche (5247 vertices and 10474 faces)

Figure 6: The models used for our measurements on low�poly meshes

Models with a low number of vertices will most likely appear erroneous when too much detail is
removed. Since the execution time of the simpli�cation of low�poly meshes is negligible � in our
use case it must not appear in real time � the quality of the algorithms will mostly depend on
the remaining visual similarity between the original and the simpli�ed mesh.

It's no surprise that the shortest edge �rst algorithm on table 1 delivers the worst results. At a
reduction rate of 60 % a lot of detail at the cow's feet and face is lost in comparison to Melax's

9. using version 1.3.1 from http://meshlab.sourceforge.net

3 COMPARISON 15

Cow (2903 vertices/5804 faces)

Reduction rate Vertices Faces Distance Time
30 % Quadric (weighted) 2036 4070 0,011601 0,05 s

Quadric 2036 4070 0,014130 0,04 s
Melax 2034 4066 0,015793 0,04 s
Shortest edge �rst 2039 4076 0,045357 0,05 s

60 % Quadric (weighted) 1168 2334 0,034556 0,07 s
Quadric 1168 2334 0,044961 0,06 s
Melax 1164 2326 0,029562 0,06 s
Shortest edge �rst 1173 2344 0,176740 0,07 s

90 % Quadric (weighted) 301 598 0,127527 0,10 s
Quadric 300 596 0,199953 0,06 s
Melax 294 584 0,104653 0,06 s
Shortest edge �rst 299 584 0,437767 0,09 s

Table 1: Low�poly measurements on the cow model

algorithm (�gure 8), which surprisingly occurs to preserve the visual appearance best at higher
compression rates.

When comparing the optical di�erences of Melax's algorithm with Garland and Heckbert's quadric
based simpli�cation at the highest compression rate we see that quadric based simpli�cation keeps
the structure of the cow's feet better, while losing more detail at the cow's horns (�gure 9a). In
the shortest edge �rst algorithm the results are no longer satisfying since the overall shape of the
cow begins to disappear (�gure 9c).

Porsche (5247 vertices/10474 faces)

Reduction rate Vertices Faces Distance Time
30 % Quadric (weighted) 3678 7336 0,292323 0,04 s

Quadric 3679 7338 0,287693 0,08 s
Melax 3680 7340 0,286906 0,04 s
Shortest edge �rst 3681 7342 0,051999 0,05 s

60 % Quadric (weighted) 2109 4196 0,287693 0,07 s
Quadric 2110 4200 0,287693 0,13 s
Melax 2113 4206 0,282963 0,06 s
Shortest edge �rst 2114 4204 1,386437 0,07 s

90 % Quadric (weighted) 539 1050 1,409054 0,10 s
Quadric 540 1054 1,381588 0,09 s
Melax 539 1058 1,418255 0,07 s
Shortest edge �rst 544 1066 1,386437 0,09 s

Table 2: Low�poly measurements on the Porsche model

When examining the results of table 2 the shortest edge �rst algorithm seems to deliver the best
optical result at low compression rates. That's mainly because of an absorption at the car's front
lid, which is not correctly triangulated by the other three algorithms (�gure 10a). But when
having a closer look the weakness of the shortest edge �rst algorithm is obvious when examining
the car's antenna, which already starts disappearing at the compression rate of 30 % (�gure 10b).

When compressing to 60 % the shortest edge �rst algorithm is the only one, which loses all detail at
the car's antenna which leads to the visually worst result (�gure 11b). At the highest compression
rate all algorithms are unable to preserve the most important details of the car (�gure 11c).

Summing up, when reducing models to low�poly meshes all algorithms are able to simplify the
given input very fast. But when analyzing the visual appearance of the simpli�ed meshes the

3 COMPARISON 16

shortest edge �rst algorithm delivers in most use cases insu�cient results, while algorithms based
on vertex pair contraction and edge collapse are able to maintain important detail even at higher
compression rates and therefore are both suitable algorithms for our initial use case.

3.4.2 Measuring High�Poly Meshes

The meshes from the Stanford University Computer Graphics Laboratory10 and Robin Bing�Yu
Chen's course page11 have been used for illustrating the performance of the algorithms on an high
number of vertices and faces (�gure 7).

(a) Stanford Bunny (34834 vertices and 69451 faces) (b) Skeleton Hand (327323 vertices and 654666 faces)

Figure 7: The models used for our measurements on high�poly meshes

Even at high compression rates the visual appearance of models with a high number of vertices
should appear unaltered. When there's no optical di�erence after the simpli�cation of high�poly
content the quality of the algorithms will be dependent on the execution time.

Bunny (34834 vertices/69451 faces)

Reduction rate Vertices Faces Distance Time
30 % Quadric (weighted) 24390 48567 0,15569 0,37 s

Quadric 24385 48565 0,15569 0,26 s
Melax 24433 48690 1,174789 0,25 s
Shortest edge �rst 24386 48588 1,205414 0,23 s

60 % Quadric (weighted) 13945 27691 0,261796 0,52 s
Quadric 13936 27676 0,232709 0,44 s
Melax 14030 27927 1,565916 0,40 s
Shortest edge �rst 13938 27736 1,604202 0,50 s

90 % Quadric (weighted) 3501 6816 0,925099 1,23 s
Quadric 3488 6799 1,020669 0,64 s
Melax 3573 7048 6,455544 1,01 s
Shortest edge �rst 3490 6899 3,576613 0,75 s

Table 3: High�poly measurements on the bunny model

Compared to the other implementations at table 3 Garland and Heckbert's algorithm occurs to
deliver superior conservation of the model's visual appearance even at high compression rates.
Melax's and the shortest edge �rst algorithm both deliver much less precise results at all com-
pression rates. When comparing the wireframe of the quadric based simpli�cation with Melax's
algorithm no big di�erences stand out at �rst sight. Only the overall shape of the bunny appears
a little less distorted (�gure 12a). The high di�erences in the Hausdor� distance may also come
from minor di�erences between the faces which sum up to a high value because of the immense
polygon count.

10. Stanford bunny, which is available on http://graphics.stanford.edu/data/3Dscanrep

11. Skeleton hand, which is available on http://graphics.im.ntu.edu.tw/~robin/courses/cg03/model

4 CONCLUSION AND ANSWER TO THE RESEARCH QUESTION 17

When comparing the bunny's appearance at the highest compression rate we recognize that vertex
pair contraction delivers the best optical result (�gure 13a). When turning the attention on the
rabbit's ears we observe that the preservation of the shortest edge �rst algorithm is erroneous
(�gure 13b), while Garland and Heckbert's algorithm is still able to maintain the overall shape.
Melax's algorithm is also able to maintain the overall shape, but is producing a lot of holes in the
highest compression rate, which of course is not desirable. Though this might be a hint that not
all face data is correctly restored after simpli�cation (�gure 13c).

Hand (327323 vertices/654666 faces)

vertices faces distance time
30 % Quadric (weighted) 229129 457489 0,011598 3,25 s

Quadric 229130 457453 0,017287 2,26 s
Melax 229380 454880 0,001957 2,36 s
Shortest edge �rst 228743 457119 0,005928 3,22 s

60 % Quadric (weighted) 130939 261496 0,013832 6,34 s
Quadric 130941 261437 0,016132 4,51 s
Melax 131276 259446 0,002291 4,72 s
Shortest edge �rst 130675 261304 0,014553 6,45 s

90 % Quadric (weighted) 32751 65458 0,017274 9,28 s
Quadric 32750 65420 0,018268 6,77 s
Melax 33022 64614 0,006332 7,25 s
Shortest edge �rst 32700 65385 0,028075 9,67 s

Table 4: High�poly measurements on the hand model

Models with so much detail as pictured at table 4 will never be simpli�ed in our use case. Also
when the simpli�ed model still contains over 30000 vertices we won't identify the course of actions
as simpli�cation, but more as reduction, since the simpli�ed models still have too much detail
for being rendered within a game engine. These tests have solely been made to benchmark all
algorithms under extreme circumstances to �nd out how long the removal of several thousand
vertices takes. We come to the conclusion that all algorithms are still fast enough to achieve this
within an acceptable time frame.

When analyzing the similarities of the meshes, Melax's algorithm performs best. But since there
are still enough vertices left at a reduction rate of 90 % no clear optical di�erences beyond the dif-
ferent compression rates of the meshes attract attention. Even when only displaying the wireframe
of the model it appears as a surface, because of the huge amount of vertices (�gure 14).

As conclusion, all implemented algorithms are able to simplify huge amounts of vertices within
reasonable time, where both vertex pair contraction and edge collapse are able to remain the
quality level of the simpli�ed mesh. The reduction of the skeleton hand was only a benchmarking
test where all algorithms were able to simplify the model in reasonable time, so the results have
lower priority than the results of the reduction of the bunny model.

4 Conclusion and Answer to the Research Question

We measured a variety of well researched simpli�cation algorithms. Garland and Heckbert's
algorithm based on vertex pair contraction and quadric error metrics delivered good results both
in our theoretical and practical comparison.

The theoretical comparison leads to the conclusion that within the most established and best
researched mesh simpli�cation algorithms those based on edge collapse and vertex pair contraction
support the widest range of di�erent mesh structures. Vertex decimation su�ers from limitations
caused by the prevention of the original mesh topology and the restriction to work only on manifold

4 CONCLUSION AND ANSWER TO THE RESEARCH QUESTION 18

surfaces, which also limits the options for simpli�cation strategies. Vertex clustering on the other
hand supports a wide variety of mesh structures and works in most cases faster than Garland and
Heckbert's algorithm. But the results after the simpli�cation process are not satisfying, especially
if there are small areas with retainable detail.

In practice, all algorithms measured performed very e�ciently. Even when simplifying a huge
model with more than 600000 faces to around a tenth of the original size it was able to perform
this task in less than 10 seconds. The analysis of more practical data in relationship to our use
case � which is automatic simpli�cation of user generated content with much less vertices � was
also satisfying. For instance, on our test machine the simpli�cation of meshes with around 10000
faces was proceeding almost in real time. This implies that even low�end computers should be
able to perform this task within reasonable time.

In Je� Somers's Mesh Simpli�cation Viewer all implemented algorithms are able to simplify meshes
only by selecting the favored compression rate. There are no additional input parameters required,
which makes all algorithms easily useable by users without technical background.

Summing up, vertex pair contraction using quadric error metrics is one of the most suitable mesh
simpli�cation algorithms for automatic compression of user generated meshes because it provides
an acceptable tradeo� between e�ciency, automatism and generality and meets the requirements
de�ned for our use case. Also algorithms based on edge collapse are an alternative worth men-
tioning. In our practical tests Melax's algorithm based on edge collapse was able to compete with
Garland and Heckbert's solution, but vertex pair contraction has the additional advantage that
it supports the merge of unconnected regions which leads to more authentic results in some use
cases.

4 CONCLUSION AND ANSWER TO THE RESEARCH QUESTION 19

(a) Shortest Edge First Algorithm

(b) Melax's Algorithm

Figure 8: When reducing 60 % of the cow model with the shortest edge �rst algorithm a lot of
detail at the cow's feet and face is lost in comparison to Melax's algorithm.

4 CONCLUSION AND ANSWER TO THE RESEARCH QUESTION 20

(a) Garland and Heckbert's Algorithm

(b) Melax's Algorithm

(c) Shortest Edge First Algorithm

Figure 9: When reducing 90 % of the cow model with the shortest edge �rst algorithm a lot of
detail is lost compared to the other implementations.

4 CONCLUSION AND ANSWER TO THE RESEARCH QUESTION 21

(a) Garland and Heckbert's Algorithm

(b) Shortest Edge First Algorithm

Figure 10: The shortest edge �rst algorithm is the only one which is able to triangulate the
absorption at the car's front lid correctly at a compression rate of 30 %.

4 CONCLUSION AND ANSWER TO THE RESEARCH QUESTION 22

(a) Garland and Heckbert's Algorithm at a reduction rate of 60 %

(b) Shortest Edge First Algorithm at a reduction rate of 60 %

(c) Melax's Algorithm at a reduction rate of 90 %

Figure 11: At a compression rate of 60 % the shortest edge �rst algorithm loses all detail on the
car's antenna, while at the highest compression rate all algorithms are unable to preserve the most
important details.

4 CONCLUSION AND ANSWER TO THE RESEARCH QUESTION 23

(a) Garland and Heckbert's Algorithm

(b) Melax's Algorithm

Figure 12: Because of the high detail of the original model no big di�erences stand out at a
compression rate of 30 %.

4 CONCLUSION AND ANSWER TO THE RESEARCH QUESTION 24

(a) Garland and Heckbert's Algorithm

(b) Shortest Edge First Algorithm

(c) Melax's Algorithm

Figure 13: At a compression rate of 90 % vertex pair contraction delivers the best optical result
while the shortest edge �rst algorithm loses detail at the rabbit's ears and Melax's algorithm
creates an erroneous mesh.

4 CONCLUSION AND ANSWER TO THE RESEARCH QUESTION 25

(a) Melax's Algorithm at a reduction rate of 30 %

(b) Melax's Algorithm at a reduction rate of 60 %

(c) Melax's Algorithm at a reduction rate of 90 %

Figure 14: Because of the huge amount of vertices no visual di�erences are perceptible within the
various reduction steps.

LIST OF FIGURES 26

List of Figures

1 Examples for manifold and non�manifold faces . 2

2 Example images for average plane and boundary 4

3 Five groups of vertices classi�ed by vertex decimation 4

4 Half� and full�edge collapse . 6

5 Simplifying a human food using vertex pair contraction and vertex clustering . . . 8

6 The models used for our measurements on low�poly meshes 14

7 The models used for our measurements on high�poly meshes 16

8 Reducing 60 % of the cow model . 19

9 Reducing 90 % of the cow model . 20

10 Reducing 30 % of the car model . 21

11 Reducing 60 and 90 % of the car model . 22

12 Reducing 30 % of the bunny model . 23

13 Reducing 90 % of the bunny model . 24

14 Comparing di�erent reduction rates of the hand model 25

Listings

1 main.cpp: setting up a reduction rate of 90 % . 12

2 mesh.cpp: the writePLY() function . 12

3 main.cpp: simpli�cation process including all enhancements 13

List of Tables

1 Low�poly measurements on the cow model . 15

2 Low�poly measurements on the Porsche model . 15

3 High�poly measurements on the bunny model . 16

4 High�poly measurements on the hand model . 17

REFERENCES 27

References

Aspert, N., D. Santa-Cruz, and T. Ebrahimi. 2002. MESH: Measuring Errors between Surfaces
using the Hausdor� distance. (Lausanne), Proceedings of the IEEE International Conference
on Multimedia and Expo 2002 (ICME), I-II:705�708.

Cignoni, P., C. Rocchini, and R. Scopigno. 1998. Metro: Measuring Error on Simpli�ed Surfaces.
Computer Graphics Forum 17 (2): 167�174. issn: 1467-8659, http://dx.doi.org/10.1111/
1467-8659.00236.

Daniels, Joel, Cláudio T. Silva, Jason Shepherd, and Elaine Cohen. 2008. Quadrilateral Mesh
Simpli�cation. ACM Trans. Graph. (New York, NY, USA) 27 (5): 148:1�148:9. issn: 0730-
0301, http://doi.acm.org/10.1145/1409060.1409101.

DeCoro, Christopher, and Natalya Tatarchuk. 2007. Real-time Mesh Simpli�cation Using the GPU.
(Seattle, Washington), I3D '07:161�166. http://doi.acm.org/10.1145/1230100.1230128.

Ferreira, Eddy. 2011. Texture Atlasing, Mesh Simpli�cation, and Progressive Meshes for a Virtual
World Architecture (May).

Franc, Martin. 2002. Methods for Polygonal Mesh Simpli�cation, Jan.

Garland, M. 1999a. Multiresolution Modeling: Survey & Future Opportunities.

Garland, Michael. 1999b. Quadric-Based Polygonal Surface Simpli�cation. AAI9950005. PhD diss.

Garland, Michael, and Paul S. Heckbert. 1997. Surface Simpli�cation Using Quadric Error Metrics.
(New York, NY, USA), SIGGRAPH '97:209�216. http://dx.doi.org/10.1145/258734.
258849.

Garland, Michael, and Yuan Zhou. 2005. Quadric-Based Simpli�cation in Any Dimension. ACM
Trans. Graph. (New York, NY, USA) 24 (2): 209�239. issn: 0730-0301, http://doi.acm.
org/10.1145/1061347.1061350.

Guthe, Michael, Pavel Borodin, and Reinhard Klein. 2005. Fast and Accurate Hausdor� Distance
Calculation between Meshes. J. of WSCG 13:41�48.

Heckbert, P. S., and M. Garland. 1997. Survey of Polygonal Surface Simpli�cation Algorithms.
(Pittsburgh, PA 15213).

Hoppe, Hugues, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. 1993. Mesh
Optimization. (Anaheim, CA), SIGGRAPH '93:19�26. http://doi.acm.org/10.1145/
166117.166119.

Lai, Yu-Kun, Leif Kobbelt, and Shi-Min Hu. 2008. An Incremental Approach to Feature Aligned
Quad Dominant Remeshing. (Stony Brook, New York), SPM '08:137�145. http://doi.acm.
org/10.1145/1364901.1364921.

Lindstrom, Peter. 2000. Out-of-Core Simpli�cation of Large Polygonal Models. (New York, NY,
USA), SIGGRAPH '00:259�262. http://dx.doi.org/10.1145/344779.344912.

Lindstrom, Peter, and Greg Turk. 2000. Image-Driven Simpli�cation. ACM Trans. Graph. (New
York, NY, USA) 19 (3): 204�241. issn: 0730-0301, http://doi.acm.org/10.1145/353981.
353995.

Luebke, David, Benjamin Watson, Jonathan D. Cohen, Martin Reddy, and Amitabh Varshney.
2002. Level of Detail for 3D Graphics. New York, NY, USA: Elsevier Science Inc. isbn:
1558608389.

McHenry, K, and Peter Bajcsy. 2008. An Overview of 3D Data Content, File Formats and Viewers.
Technical Report ISDA08002:21. http://isda.ncsa.illinois.edu/peter/publications/
techreports/2008/NCSA-ISDA-2008-002.pdf.

REFERENCES 28

Melax, S. 1998. A Simple, Fast and E�ective Polygon Reduction Algorithm. Game Developer

Magazine, no. 11 (Nov.): 44�49. http://www.melax.com/gdmag.pdf.

Metaversum GmbH. 2011. Twinity. [Online; accessed on 19.01.2012]. Oct. http://www.twinity.
com.

Rossignac, Jarek, and Paul Borrel. 1992.Multi-Resolution 3D Approximations for Rendering Com-

plex Scenes. Technical report. IBM Research Report RC 17697. Also appeared in Modeling in

Computer Graphics, Springer, 1993. Yorktown Heights, NY 10598, Feb.

Schroeder, William J. 1997. A Topology Modifying Progressive Decimation Algorithm. (Phoenix,
Arizona, United States). http://portal.acm.org/citation.cfm?id=266989.267059.

Schroeder, William J., Jonathan A. Zarge, and William E. Lorensen. 1992. Decimation of Triangle
Meshes. (New York, NY, USA):65�70. http://dx.doi.org/10.1145/133994.134010.

Somers, Je�rey. 2002. Mesh Simpli�cation Viewer. [Online; accessed on 19.01.2012]. http://
jsomers.com/vipm_demo/meshsimp.html.

Soucy, Marc, and Denis Laurendeau. 1996. Multiresolution Surface Modeling Based on Hierarchical
Triangulation. Comput. Vis. Image Underst. (New York, NY, USA) 63 (1): 1�14. issn: 1077-
3142, http://dl.acm.org/citation.cfm?id=229144.229146.

Talton, Jerry O. 2004. A Short Survey of Mesh Simpli�cation Algorithms.

Visual Computing Laboratory. 2011. Meshlab. [Online; accessed on 19.01.2012]. http://meshlab.
sourceforge.net/.

Xin, Shi-Qing, Shuang-Min Chen, Ying He, Guo-Jin Wang, Xianfeng Gu, and Hong Qin. 2011.
Isotropic Mesh Simpli�cation by Evolving the Geodesic Delaunay Triangulation. (Washington,
DC, USA), ISVD '11:39�47. http://dx.doi.org/10.1109/ISVD.2011.14.

Yuan, Ping. 1999. Benchmarking Mesh Simpli�cation Algorithms in Real-time Rendering Appli-

cations.

